Suter-Dick, Laura

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Suter-Dick
Vorname
Laura
Name
Suter-Dick, Laura

Suchergebnisse

Gerade angezeigt 1 - 6 von 6
  • Publikation
    Methotrexate-induced liver injury is associated with oxidative stress, impaired mitochondrial respiration, and endoplasmic reticulum stress in vitro
    (MDPI, 01.12.2022) Schmidt, Saskia; Messner, Catherine; Gaiser, Carine; Hämmerli, Carina; Suter-Dick, Laura [in: International Journal of Molecular Sciences]
    Low-dose methotrexate (MTX) is a standard therapy for rheumatoid arthritis due to its low cost and efficacy. Despite these benefits, MTX has been reported to cause chronic drug-induced liver injury, namely liver fibrosis. The hallmark of liver fibrosis is excessive scarring of liver tissue, triggered by hepatocellular injury and subsequent activation of hepatic stellate cells (HSCs). However, little is known about the precise mechanisms through which MTX causes hepatocellular damage and activates HSCs. Here, we investigated the mechanisms leading to hepatocyte injury in HepaRG and used immortalized stellate cells (hTERT-HSC) to elucidate the mechanisms leading to HSC activation by exposing mono- and co-cultures of HepaRG and hTERT-HSC to MTX. The results showed that at least two mechanisms are involved in MTX-induced toxicity in HepaRG: (i) oxidative stress through depletion of glutathione (GSH) and (ii) impairment of cellular respiration in a GSH-independent manner. Furthermore, we measured increased levels of endoplasmic reticulum (ER) stress in activated HSC following MTX treatment. In conclusion, we established a human-relevant in vitro model to gain mechanistical insights into MTX-induced hepatotoxicity, linked oxidative stress in HepaRG to a GSH-dependent and -independent pathway, and hypothesize that not only oxidative stress in hepatocytes but also ER stress in HSCs contribute to MTX-induced activation of HSCs.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Apical medium flowiInfluences the morphology and physiology of human proximal tubular cells in a microphysiological system
    (MDPI, 30.09.2022) Specioso, Gabriele; Bovard, David; Zanetti, Filippo; Maranzano, Fabio; Merg, Céline; Sandoz, Antonin; Titz, Bjoern; Dalcanale, Federico; Hoeng, Julia; Renggli, Kasper; Suter-Dick, Laura [in: Bioengineering]
    There is a lack of physiologically relevant in vitro human kidney models for disease modelling and detecting drug-induced effects given the limited choice of cells and difficulty implementing quasi-physiological culture conditions. We investigated the influence of fluid shear stress on primary human renal proximal tubule epithelial cells (RPTECs) cultured in the micro-physiological Vitrofluid device. This system houses cells seeded on semipermeable membranes and can be connected to a regulable pump that enables controlled, unidirectional flow. After 7 days in culture, RPTECs maintained physiological characteristics such as barrier integrity, protein uptake ability, and expression of specific transporters (e.g., aquaporin-1). Exposure to constant apical side flow did not cause cytotoxicity, cell detachment, or intracellular reactive oxygen species accumulation. However, unidirectional flow profoundly affected cell morphology and led to primary cilia lengthening and alignment in the flow direction. The dynamic conditions also reduced cell proliferation, altered plasma membrane leakiness, increased cytokine secretion, and repressed histone deacetylase 6 and kidney injury molecule 1 expression. Cells under flow also remained susceptible to colistin-induced toxicity. Collectively, the results suggest that dynamic culture conditions in the Vitrofluid system promote a more differentiated phenotype in primary human RPTECs and represent an improved in vitro kidney model.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Directional submicrofiber hydrogel composite scaffolds supporting neuron differentiation and enabling neurite alignment
    (MDPI, 29.09.2022) Selvi, Jasmin; Faia-Torres, Ana Bela; Rühe, Jürgen; Züger, Fabian; Suter-Dick, Laura; Mungenast, Lena; Gullo, Maurizio [in: International Journal of Molecular Sciences]
    Cell cultures aiming at tissue regeneration benefit from scaffolds with physiologically relevant elastic moduli to optimally trigger cell attachment, proliferation and promote differentiation, guidance and tissue maturation. Complex scaffolds designed with guiding cues can mimic the anisotropic nature of neural tissues, such as spinal cord or brain, and recall the ability of human neural progenitor cells to differentiate and align. This work introduces a cost-efficient gelatin-based submicron patterned hydrogel–fiber composite with tuned stiffness, able to support cell attachment, differentiation and alignment of neurons derived from human progenitor cells. The enzymatically crosslinked gelatin-based hydrogels were generated with stiffnesses from 8 to 80 kPa, onto which poly(ε-caprolactone) (PCL) alignment cues were electrospun such that the fibers had a preferential alignment. The fiber–hydrogel composites with a modulus of about 20 kPa showed the strongest cell attachment and highest cell proliferation, rendering them an ideal differentiation support. Differentiated neurons aligned and bundled their neurites along the aligned PCL filaments, which is unique to this cell type on a fiber–hydrogel composite. This novel scaffold relies on robust and inexpensive technology and is suitable for neural tissue engineering where directional neuron alignment is required, such as in the spinal cord.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    3D printed microfluidic modules. Passive mixers and cells encapsulation in alginate
    (De Gruyter, 02.09.2022) Dalcanale, Federico; Caj, Michaela; Schuler, Felix; Ganeshanathan, Kireedan; Suter-Dick, Laura [in: Current Directions in Biomedical Engineering]
    Passive mixers and droplet generation microfluidic chip modules were designed and manufactured using a commercial SLA 3D-printer. The mixing modules were designed specifically for 3D-printing and evaluated using FEM modeling. The co-flow droplet generator was used for cancer cells encapsulation and drug potency evaluation.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    How to Foster ‘New Approach Methodology’ Toxicologists
    (SAGE, 18.02.2022) Doktorova, Tatyana Y.; Azzi, Pamela; Hofer, Joelle; Werner, Sophie; Singh, Pranika; Hardy, Barry; Chesne, Christophe; Messner, Catherine; Gaiser, Carine; Suter-Dick, Laura [in: Alternatives to Laboratory Animals]
    The need to reduce, refine and replace animal experimentation has led to a boom in the establishment of new approach methodologies (NAMs). This promising trend brings the hope that the replacement of animals by using NAMs will become increasingly accepted by regulators, included in legislation, and consequently more-often implemented by industry. The majority of NAMs, however, are still not very well understood, either due to the complexity of the applied approach or the data analysis workflow. A potential solution to this problem is the provision of better educational resources to scientists new to the area — showcasing the added value of NAMs and outlining various ways of overcoming issues associated with knowledge gaps. In this paper, the educational exchange between four institutions — namely, two universities and two SMEs — via a series of video training sessions, is described. The goal of this exchange was to showcase an exemplary event to help introduce scientists to non-animal approaches, and to actively support the development of resources enabling the use of alternatives to laboratory animals.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Evaluation of dioxin induced transcriptomic responses in a 3D human liver microtissue model
    (Elsevier, 2022) Tian, Mingming; Gou, Xiao; Zhang, Xiaowei; Messner, Catherine; Suter-Dick, Laura; Yan, Lu [in: Environmental Research]
    Three-dimensional human liver microtissue model provides a promising method for predicting the human hepatotoxicity of environmental chemicals. However, the dynamics of transcriptional responses of 3D human liver microtissue model to dioxins exposure remain unclear. Herein, time-series transcriptomic analysis was used to characterize modulation of gene expression over 14 days in 3D human liver microtissues exposed to 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD, 31 nM, 10 ng/ml). Changes in gene expression and modulation of biological pathways were evaluated at several time points. The results showed that microtissues stably expressed genes related to toxicological pathways (e.g. highly of genes involved in external stimuli and maintenance of cell homeostasis pathways) during the 14-day culture period. Furthermore, a weekly phenomenon pattern was observed for the number of the differentially expressed genes in microtissues exposed to TCDD at each time point. TCDD led to an induction of genes involved in cell cycle regulation at day three. Metabolic pathways were the main significantly induced pathways during the subsequent days, with the immune/inflammatory response enriched on the fifth day, and the cellular response to DNA damage was identified at the end of the exposure. Finally, relevant transcription patterns identified in microtissues were compared with published data on rodent and human cell-line studies to elucidate potential species-specific responses to TCDD over time. Cell development and cytochrome P450 pathway were mainly affected after a 3-day exposure, with the DNA damage response identified at the end of exposure in the human microtissue system but not in mouse/rat primary hepatocytes models. Overall, the 3D human liver microtissue model is a valuable tool to predict the toxic effects of environmental chemicals with a relatively long exposure.
    01A - Beitrag in wissenschaftlicher Zeitschrift