Suter-Dick, Laura

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Suter-Dick
Vorname
Laura
Name
Suter-Dick, Laura

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Publikation
    Directional submicrofiber hydrogel composite scaffolds supporting neuron differentiation and enabling neurite alignment
    (MDPI, 29.09.2022) Selvi, Jasmin; Faia-Torres, Ana Bela; Rühe, Jürgen; Züger, Fabian; Suter-Dick, Laura; Mungenast, Lena; Gullo, Maurizio [in: International Journal of Molecular Sciences]
    Cell cultures aiming at tissue regeneration benefit from scaffolds with physiologically relevant elastic moduli to optimally trigger cell attachment, proliferation and promote differentiation, guidance and tissue maturation. Complex scaffolds designed with guiding cues can mimic the anisotropic nature of neural tissues, such as spinal cord or brain, and recall the ability of human neural progenitor cells to differentiate and align. This work introduces a cost-efficient gelatin-based submicron patterned hydrogel–fiber composite with tuned stiffness, able to support cell attachment, differentiation and alignment of neurons derived from human progenitor cells. The enzymatically crosslinked gelatin-based hydrogels were generated with stiffnesses from 8 to 80 kPa, onto which poly(ε-caprolactone) (PCL) alignment cues were electrospun such that the fibers had a preferential alignment. The fiber–hydrogel composites with a modulus of about 20 kPa showed the strongest cell attachment and highest cell proliferation, rendering them an ideal differentiation support. Differentiated neurons aligned and bundled their neurites along the aligned PCL filaments, which is unique to this cell type on a fiber–hydrogel composite. This novel scaffold relies on robust and inexpensive technology and is suitable for neural tissue engineering where directional neuron alignment is required, such as in the spinal cord.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Single Cell Gene Expression analysis in a 3D microtissue liver model reveals cell type-specific responses to pro-fibrotic TGF-β1 stimulation
    (MDPI, 22.04.2021) Messner, Catherine; Babrak, Lmar; Titolo, Gaia; Caj, Michaela; Miho, Enkelejda; Suter-Dick, Laura [in: International Journal of Molecular Sciences]
    3D cell culture systems are widely used to study disease mechanisms and therapeutic interventions. Multicellular liver microtissues (MTs) comprising HepaRG, hTERT-HSC and THP-1 maintain multicellular interactions and physiological properties required to mimic liver fibrosis. However, the inherent complexity of multicellular 3D-systems often hinders the discrimination of cell type specific responses. Here, we aimed at applying single cell sequencing (scRNA-seq) to discern the molecular responses of cells involved in the development of fibrosis elicited by TGF-β1. To obtain single cell suspensions from the MTs, an enzymatic dissociation method was optimized. Isolated cells showed good viability, could be re-plated and cultured in 2D, and expressed specific markers determined by scRNA-seq, qRT-PCR, ELISA and immunostaining. The three cell populations were successfully clustered using supervised and unsupervised methods based on scRNA-seq data. TGF-β1 led to a fibrotic phenotype in the MTs, detected as decreased albumin and increased αSMA expression. Cell-type specific responses to the treatment were identified for each of the three cell types. They included HepaRG damage characterized by a decrease in cellular metabolism, prototypical inflammatory responses in THP-1s and extracellular matrix remodeling in hTERT-HSCs. Furthermore, we identified novel cell-specific putative fibrosis markers in hTERT-HSC (COL15A1), and THP-1 (ALOX5AP and LAPTM5).
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Design of kidney structures to be cultured under flow conditions in a microfluidic device
    (2016) Suter-Dick, Laura; Hugot Beaufils, Marina; Chavanne, Philippe; Hradetzky, David
    06 - Präsentation