Schwaninger, Adrian

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Schwaninger
Vorname
Adrian
Name
Schwaninger, Adrian

Suchergebnisse

Gerade angezeigt 1 - 10 von 24
Lade...
Vorschaubild
Publikation

Performance of X-ray baggage screeners in different work environments: comparing remote and local cabin baggage screening

2024-07, Latscha, Marius, Schwaninger, Adrian, Sauer, Jürgen, Sterchi, Yanik

Lade...
Vorschaubild
Publikation

Night work, circadian rhythm, and cognitive performance: A field study with airport security screeners

2024, Riz à Porta, Robin, Michel, Stefan, Sterchi, Yanik, Sauer, Jürgen, Schwaninger, Adrian

Lade...
Vorschaubild
Publikation

Why and how unpredictability is implemented in aviation security - A first qualitative study

2023-02-17, Zeballos, Melina, Fumagalli, Carla Sophie, Ghelfi-Wächter, Signe, Schwaninger, Adrian

Vorschaubild nicht verfügbar
Publikation

3D imaging for hold baggage screening: The relevance of rotation and slicing functions

2022-09-06, Merks, Sarah, Sauer, Juergen, Schwaninger, Adrian

Vorschaubild nicht verfügbar
Publikation

Belastungen und Ressourcen und ihre Auswirkungen auf Beanspruchung, Wohlbefinden und Kündigungsabsicht - Eine Studie mit Flughafensicherheitsbeauftragten

2024-03-08, Latscha, Marius, Theiler, Sven, Sterchi, Yanik, Schwaninger, Adrian

Lade...
Vorschaubild
Publikation

Time on task and task load in visual inspection: A four-month field study with X-ray baggage screeners

2023-05-17, Buser, Daniela, Schwaninger, Adrian, Sauer, Jürgen, Sterchi, Yanik

Lade...
Vorschaubild
Publikation

Video demonstrations can predict the intention to use digital learning technologies

2023-01-21, Sprenger, David, Schwaninger, Adrian

The technology acceptance model (TAM) uses perceived usefulness and perceived ease of use to predict the intention to use a technology which is important when deciding to invest in a technology. Its extension for e-learning (the general extended tech-nology acceptance model for e-learning; GETAMEL) adds subjective norm to predict the intention to use. Technology acceptance is typically measured after the technology has been used for at least three months. This study aims to identify whether a minimal amount of exposure to the technology using video demonstrations is sufficient to predict the intention to use it three months later. In two studies—one using TAM and one using GETAMEL—we showed students of different cohorts (94 and 111 participants, respectively) video demonstra-tions of four digital technologies (classroom response system, classroom chat, e-lectures, mobile virtual real-ity). We then measured technology acceptance imme-diately after the demonstration and after three months of technology use. Using partial least squares model-ling, we found that perceived usefulness significantly predicted the intention to use three months later. In GETAMEL, perceived usefulness significantly predicted the intention to use for three of the four learning technol-ogies, while subjective norm only predicted the inten-tion to use for mobile virtual reality. We conclude that video demonstrations can provide valuable insight for decision-makers and educators on whether students will use a technology before investing in it.

Vorschaubild nicht verfügbar
Publikation

Objektlernen mit Virtual Reality versus am 2D Bildschirm

2024-03-07, Wyssenbach, Thomas, Kaufmann, Kaspar, Schwaninger, Adrian

Vorschaubild nicht verfügbar
Publikation

Segmentierung beeinflusst das Lernen: Eine Studie zur Wissensvermittlung durch Virtual Reality und 2D-Bildschirmen mit Flughafensicherheitspersonal​

2023-03-02, Wyssenbach, Thomas, Kaufmann, Kaspar, Schwaninger, Adrian

Vorschaubild nicht verfügbar
Publikation

Poster Presentation of Project Examples in the Field of Artificial Intelligence

2022-11-17, Schwaninger, Adrian, Sterchi, Yanik, Wäfler, Toni, Renggli, Philipp, Rack, Oliver, Bleisch, Susanne, Paneth, Lisa, Jeitziner, Loris Tizian, Gasparik, Matus, Zahn, Carmen