Gysel, Martin

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Gysel
Vorname
Martin
Name
Martin Gysel

Suchergebnisse

Gerade angezeigt 1 - 10 von 18
  • Publikation
    New particle formation in the free troposphere. A question of chemistry and timing
    (American Association for the Advancement of Science, 2016) Bianchi, Federico; Tröstl, Jasmin; Junninen, Heikki; Frege, Carla; Henne, Stephan; Hoyle, Christopher R.; Molteni, Ugo; Herrmann, Erik; Adamov, Alexey; Bukowiecki, Nicolas; Chen, Xuemeng; Duplissy, Jonathan; Gysel, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kontkanen, Jenni; Kürten, Andreas; Manninen, Hanna E.; Münch, Steffen; Peräkylä, Otso; Petäjä, Tuukka; Rondo, Linda; Williamson, Christina; Weingartner, Ernest; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku; Dommen, Josef; Baltensperger, Urs [in: Science]
    From neutral to new Many of the particles in the troposphere are formed in situ, but what fraction of all tropospheric particles do they constitute and how exactly are they made? Bianchi et al report results from a high-altitude research station. Roughly half of the particles were newly formed by the condensation of highly oxygenated multifunctional compounds. A combination of laboratory results, field measurements, and model calculations revealed that neutral nucleation is more than 10 times faster than ion-induced nucleation, that particle growth rates are size-dependent, and that new particle formation occurs during a limited time window.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Analysis of long‐term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport
    (Wiley, 2015) Herrmann, Erik; Weingartner, Ernest; Henne, Stephan; Vuilleumier, Laurent; Bukowiecki, Nicolas; Steinbacher, Martin; Conen, Franz; Collaud Coen, Martine; Hammer, Emanuel; Jurányi, Zsófia; Baltensperger, Urs; Gysel, Martin [in: Journal of Geophysical Research: Atmospheres]
    Six years of aerosol size distribution measurements between 20 and 600 nm diameters and total aerosol concentration above 10 nm from March 2008 to February 2014 at the high‐alpine site Jungfraujoch are presented. The size distribution was found to be typically bimodal with mode diameters and widths relatively stable throughout the year and the observation period. New particle formation was observed on 14.5% of all days without a seasonal preference. Particles typically grew only into the Aitken mode and did not reach cloud condensation nucleus (CCN) sizes on the time scale of several days. Growth of preexisting particles in the Aitken mode, on average, contributed very few CCN. We concluded that the dominant fraction of CCN at Jungfraujoch originated in the boundary layer. A number of approaches were used to distinguish free tropospheric (FT) conditions and episodes with planetary boundary layer (PBL) influence. In the absence of PBL injections, the concentration of particles larger than 90 nm (N90, roughly corresponding to the CCN concentration) reached a value ~40 cm−3 while PBL influence caused N90 concentrations of several hundred or even 1000 cm−3. Comparing three criteria for free tropospheric conditions, we found FT prevalence for 39% of the time with over 60% during winter and below 20% during summer. It is noteworthy that a simple criterion based on standard trace gas measurements appeared to outperform alternative approaches.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Predicting hygroscopic growth using single particle chemical composition estimates
    (Wiley, 2014) Healy, Robert M.; Evans, Greg J.; Murphy, Michael; Jurányi, Zsófia; Tritscher, Torsten; Laborde, Marie; Weingartner, Ernest; Gysel, Martin; Poulain, Laurent; Kamilli, Katharina A.; Wiedensohler, Alfred; O'Connor, Ian P.; McGillicuddy, Eoin; Sodeau, John R.; Wenger, John C. [in: Journal of Geophysical Research: Atmospheres]
    Single particle mass spectral data, collected in Paris, France, have been used to predict hygroscopic growth at the single particle level. The mass fractions of black carbon, organic aerosol, ammonium, nitrate, and sulphate present in each particle were estimated using a combination of single particle mass spectrometer and bulk aerosol chemical composition measurements. The Zdanovskii‐Stokes‐Robinson (ZSR) approach was then applied to predict hygroscopic growth factors based on these mass fraction estimates. Smaller particles with high black carbon mass fractions and low inorganic ion mass fractions exhibited the lowest predicted growth factors, while larger particles with high inorganic ion mass fractions exhibited the highest growth factors. Growth factors were calculated for subsaturated relative humidity (90%) to enable comparison with hygroscopic tandem differential mobility analyzer measurements. Mean predicted and measured hygroscopic growth factors for 110, 165, and 265 nm particles were found to agree within 6%. Single particle‐based ZSR hygroscopicity estimates offer an advantage over bulk aerosol composition‐based hygroscopicity estimates by providing additional chemical mixing state information. External mixing can be determined for particles of a given diameter through examination of the predicted hygroscopic growth factor distributions. Using this approach, 110 nm and 265 nm particles were found to be predominantly internally mixed; however, external mixing of 165 nm particles was observed periodically when thinly coated and thickly coated black carbon particles were simultaneously detected. Single particle‐resolved chemical information will be useful for modeling efforts aimed at constraining cloud condensation nuclei activity and hygroscopic growth.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics
    (AIP Publishing, 24.06.2013) Keskinen, Helmi; Virtanen, Annele; Joutsensaari, Jorma; Tsagkogeorgas, Georgios; Duplissy, Jonathan; Schobesberger, Siegfried; Gysel, Martin; Riccobono, Francesco; Slowik, Jay Gates; Bianchi, Federico; Yli-Juuti, Taina; Lehtipalo, Katrianne; Rondo, Linda; Breitenlechner, Martin; Kupc, Agnieszka; Almeida, João; Amorim, Antonio; Dunne, Eimear M.; Downard, Andrew J.; Ehrhart, Sebastian; Franchin, Alessandro; Kajos, Maija K.; Kirkby, Jasper; Kürten, Andreas; Nieminen, Tuomo; Makhmutov, Vladimir; Mathot, Serge; Miettinen, Pasi; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Santos, Filipe D.; Schallhart, Simon; Sipilä, Mikko; Stozhkov, Yuri; Tomé, Antonio; Vaattovaara, Petri; Wimmer, Daniela; Prévôt, André S.H.; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Viisanen, Yrjö; Weingartner, Ernest; Riipinen, Ilona; Hansel, Armin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R.; Baltensperger, Urs; Wex, Heike; Stratmann, Frank; Laaksonen, Ari; DeMott, Paul J.; O'Dowd, Colin D. [in: Nucleation and atmospheric aerosols]
    04B - Beitrag Konferenzschrift
  • Publikation
    Hygroscopic properties of fresh and aged wood burning particles
    (Elsevier, 2013) Martin, Maria; Tritscher, Torsten; Jurányi, Zsófia; Heringa, Maarten F.; Sierau, Berko; Weingartner, Ernest; Chirico, Roberto; Gysel, Martin; Prévôt, André S.H.; Baltensperger, Urs; Lohmann, Ulrike [in: Journal of Aerosol Science]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Relating cloud condensation nuclei activity and oxidation level of α-pinene secondary organic aerosols
    (Wiley, 30.11.2011) Frosch, Mia; Bilde, Merete; DeCarlo, Peter F.; Jurányi, Zsófia; Tritscher, Torsten; Dommen, Josef; Donahue, Neil M.; Gysel, Martin; Weingartner, Ernest; Baltensperger, Urs [in: Journal of Geophysical Research: Atmospheres]
    During a series of smog chamber experiments, the effects of chemical and photochemical aging on the ability of organic aerosols generated from ozonolysis of α-pinene to act as cloud condensation nuclei (CCN) were investigated. In particular, the study focused on the relation between oxygenation and the CCN-derived single hygroscopicity parameter κ for different experimental conditions: varying precursor concentrations (10–40 ppb), different OH sources (photolysis of HONO either with or without the addition of NO or ozonolysis of tetramethylethylene), and exposure to light. Oxygenation was described by the contribution of the aerosol mass spectrometer (AMS) mass fragment m/z 44 to the total organic signal (f44) and the oxygen to carbon molar ratio (O/C), likewise determined with AMS. CCN activity, described by the hygroscopicity parameter κ, was determined with a CCN counter. It was found that f44 increases with decreasing precursor concentration and with chemical aging, whereas neither of these affects CCN activity. Overall, κ is largely independent of O/C in the range 0.3 < O/C < 0.6 (0.07 < f44 < 0.12), although an empirical unweighted least squares fit was determined: κ = (0.071 ± 0.02) · (O/C) + (0.0785 ± 0.009) for particles with diameter in the range 59–200 nm. Growth kinetics of activating secondary organic aerosols were found to be comparable to those of ammonium sulfate and were not influenced by chemical aging.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch
    (Wiley, 24.05.2011) Jurányi, Zsófia; Gysel, Martin; Weingartner, Ernest; Bukowiecki, Nicolas; Kammermann, Lorenz; Baltensperger, Urs [in: Journal of Geophysical Research: Atmospheres]
    Between May 2008 and September 2009 the cloud condensation nuclei (CCN) number concentration, NCCN, was measured at the high alpine site Jungfraujoch, which is located in the free troposphere most of the time. Measurements at 10 different supersaturations (0.12%–1.18%) were made using a CCN counter (CCNC). The monthly median NCCN values show a distinct seasonal variability with ∼5–12 times higher values in summer than in winter. The major part of this variation can be explained by the seasonal amplitude of total aerosol number concentration (∼4.5 times higher values in summer), but it is further amplified (factor of ∼1.1–2.6) by a shift of the particle number size distribution toward slightly larger sizes in summer. In contrast to the extensive properties, the monthly median of the critical dry diameter, above which the aerosols activate as CCN, does not show a seasonal cycle (relative standard deviations of the monthly median critical dry diameters at the different supersaturations are 4–9%) or substantial variability (relative standard deviations of individual data points at the different supersaturations are less than 18–37%). The mean CCN-derived hygroscopicity of the aerosol corresponds to a value of the hygroscopicity parameter κ of 0.20 (assuming a surface tension of pure water) with moderate supersaturation dependence. NCCN can be reliably predicted throughout the measurement period with knowledge of the above-mentioned averaged κ value and highly time-resolved (∼5 min) particle number size distribution data. The predicted NCCN was within 0.74 to 1.29 times the measured value during 80% of the time (94,499 data points in total at 10 different supersaturations).
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Subarctic atmospheric aerosol composition. 3. Measured and modeled properties of cloud condensation nuclei
    (Wiley, 19.02.2010) Kammermann, Lukas; Gysel, Martin; Weingartner, Ernest; Herich, Hanna; Cziczo, Daniel J.; Holst, Thomas; Svenningsson, Birgitta; Arneth, Almut; Baltensperger, Urs [in: Journal of Geophysical Research: Atmospheres]
    Aerosol particles can modify cloud properties by acting as cloud condensation nuclei (CCN). Predicting CCN properties is still a challenge and not properly incorporated in current climate models. Atmospheric particle number size distributions, hygroscopic growth factors, and polydisperse CCN number concentrations were measured at the remote subarctic Stordalen mire, 200 km north of the Arctic Circle in northern Sweden. The CCN number concentration was highly variable, largely driven by variations in the total number of sufficiently large particles, though the variability of chemical composition was increasingly important for decreasing supersaturation. The hygroscopicity of particles measured by a hygroscopicity tandem differential mobility analyzer (HTDMA) was in agreement with large critical diameters observed for CCN activation (κ ≈ 0.07–0.21 for D = 50–200 nm). Size distribution and time‐ and size‐resolved HTDMA data were used to predict CCN number concentrations. Agreement of predictions with measured CCN within ±11% was achieved using parameterized Köhler theory and assuming a surface tension of pure water. The sensitivity of CCN predictions to various simplifying assumptions was further explored: We found that (1) ignoring particle mixing state did not affect CCN predictions, (2) averaging the HTDMA data in time with retaining the size dependence did not introduce a substantial bias, while individual predictions became more uncertain, and (3) predictions involving the hygroscopicity parameter recommended in literature for continental sites (κ ≈ 0.3 ± 0.1) resulted in a significant prediction bias. Future modeling studies should therefore at least aim at using averaged, size‐resolved, site‐specific hygroscopicity or chemical composition data for predictions of CCN number concentrations.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of α-pinene secondary organic aerosol
    (Royal Society of Chemistry, 05.08.2009) Jurányi, Zsófia; Gysel, Martin; Duplissy, Jonathan; Weingartner, Ernest; Tritscher, Torsten; Dommen, Josef; Henning, Silvia; Ziese, Markus; Kiselev, Alexej; Stratmann, Frank; George, Ingrid; Baltensperger, Urs [in: Physical Chemistry Chemical Physics]
    Hygroscopic properties of secondary organic aerosol (SOA) formed by photooxidation of different concentrations (10–27 or 220–270 ppb) of α-pinene precursor were investigated at different relative humidities (RH) using a hygroscopicity tandem differential mobility analyzer (HTDMA, RH = 95–97%) and using the mobile version of the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, RH = 98–99.3%). In addition, the cloud condensation nuclei (CCN) activity was measured applying two CCN counters (CCNC). An apparent single-hygroscopicity parameter, κ, of ∼0.09, ∼0.07–0.13, and ∼0.02–0.04 was derived from CCNC, HTDMA and LACIS data, respectively, assuming the surface tension of pure water. Closure between HTDMA and CCNC data was achieved within experimental uncertainty, whereas closure between LACIS and CCNC was only achieved by assuming a concentration-dependent surface tension reduction, consequently resulting in lower CCNC-derived κ values. Comparing different experimental techniques at varying precursor concentrations in more detail reveals further open questions. Varying precursor concentration influences hygroscopic growth factors at subsaturated RH, while it has no effect on the CCN activation. This difference in behaviour might be caused by precursor concentration-dependent surface tension depression or changing droplet solution concentration dependence of the water activity coefficient with varying SOA composition. Furthermore, evidence was found that the SOA might need several seconds to reach the equilibrium growth factor at high RH.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties
    (Wiley, 10.07.2009) Herich, Hanna; Kammermann, Lukas; Friedman, Beth; Gross, Deborah S.; Weingartner, Ernest; Lohmann, Ulrike; Spichtinger, Peter; Gysel, Martin; Baltensperger, Urs; Cziczo, Daniel J. [in: Journal of Geophysical Research: Atmospheres]
    Subarctic aerosols were sampled during July 2007 at the Abisko Scientific Research Station Stordalen site in northern Sweden with an instrument setup consisting of a custom‐built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) connected in series to a single particle mass spectrometer. Aerosol chemical composition in the form of bipolar single particle mass spectra was determined as a function of hygroscopic growth both in situ and in real time. The HTDMA was deployed at a relative humidity of 82%, and particles with a dry mobility diameter of 260 nm were selected. Aerosols from two distinct air masses were analyzed during the sampling period. Sea salt aerosols were found to be the dominant particle group with the highest hygroscopicity. High intensities of sodium and related peaks in the mass spectra were identified as exclusive markers for large hygroscopic growth. Particles from biomass combustion were found to be the least hygroscopic aerosol category. Species normally considered soluble (e.g., sulfates and nitrates) were found in particles ranging from high to low hygroscopicity. Furthermore, the signal intensities of the peaks related to these species did not correlate with hygroscopicity.
    01A - Beitrag in wissenschaftlicher Zeitschrift