Hugi, Christoph

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Hugi
Vorname
Christoph
Name
Hugi, Christoph

Suchergebnisse

Gerade angezeigt 1 - 10 von 22
  • Publikation
    Life cycle assessment of a novel production route for scandium recovery from bauxite residues
    (Elsevier, 2024) Hengevoss, Dirk; Misev, Victor; Feigl, Viktória; Fekete-Kertész, Ildikó; Molnár, Mónika; Balomenos, Efthymios; Davris, Panagiotis; Hugi, Christoph; Lenz, Markus [in: Cleaner Waste Systems]
    Scandium (Sc) has various technological applications, but the concentrations of Sc in ores are low. Both, the mining of low concentrated Sc and the production of industrial-grade Sc are a heavy burden on the environment. Bauxite residue (BR) from alumina production represents one of the major sources of Sc in Europe (Ochsenkühn-Petropulu et al., 1994). The goal of this study is to assess the environmental impacts from cradle to gate of a novel production route developed in the Scandium Aluminium Europe project (SCALE) to extract Sc at concentrations <100 ppm from BR, to concentrate and upgrade it to pure ScF3 and Sc2O3 and ultimately to refine it to an aluminium scandium master alloy with 2 % Sc mass fraction (AlSc2 %). Results show that the global warming potential (GWP), measured in CO2-eq per kg Sc2O3, generated with the novel route is about half the GWP of the state-of-the-art Sc2O3 production from rare earth tailings when applying equal allocation principles. The initial process step to dissolve BR and extract Sc consumes elevated amounts of acid and energy and is responsible for at least 80 % of the route’s total environmental impact. The amount of the generated filter cake (FC) is equal to the amount of the BR input and is a potential resource for cement clinker production. The ecotoxicological study indicates that both FC and BR are slightly ecotoxic.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Innovative technology of biscuit production based on the use of secondary products of soybean processing
    (Oles Honchar Dnipro National University, 25.04.2023) Korkach, Hanna V.; Kotuzaki, Olena M.; Breitenmoser, Lena; Behner, David; Hugi, Christoph; Krusir, Galina V. [in: Journal of Chemistry and Technologies]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Micropollutant abatement with UV/H2O2 oxidation or low-pressure reverse osmosis? A comparative life cycle assessment for drinking water production
    (Elsevier, 15.02.2022) Roth, Christine; Wünsch, Robin; Wülser, Richard; Antes, Ralf; Dinkel, Fredy; Hugi, Christoph; Thomann, Michael [in: Journal of Cleaner Production]
    Micropollutants (MP) are undesired in drinking water. Advanced oxidation processes (AOP) or low-pressure reverse osmosis membrane filtrations (LPRO) can be used to remove them during the water purification process. For a specific case, two treatment scenarios were compared with a life cycle assessment (LCA), using three impact assessment methods (Ecological Scarcity 2013, ILCD 2011, EDIP 2003). Scenario 1 (AOP-based) was a UV/H2O2 oxidation with a subsequent granular activated carbon (GAC) filter to remove excess H2O2 before soil infiltration. Scenario 2 (LPRO-based) was a side-stream treatment with an ultrafiltration (UF) and low-pressure reverse osmosis (LPRO) filtration before soil infiltration and the LPRO retentate was treated with O3/H2O2 and subsequent granular activated carbon (GAC) filter before discharge back into Rhine. Sensitivity analyses were performed on the relevant contributors to evaluate the robustness of the results. LCA results showed that in the base-line scenario (electricity from renewable energy sources) the LPRO-based treatment had notably fewer environmental impacts than the AOP-based treatment, which was confirmed with three impact assessment methods. Key contributors to the impacts were mostly operating resources, i.e., electricity, H2O2, liquid O2 for ozone generation and GAC, but also construction resources in the LPRO process. The electrical energy source was decisive for the results: with a share of renewable energy sources <80%, the AOP-based treatment was the better option due to its lower specific energy demand. The optimization of treatment conditions, such as lower H2O2 concentration at an increased UV fluence; different H2O2:O3 molar ratios; or extended GAC utilization time could influence the environmental impact within a range of ±10–30%. Environmental benefits, i.e. the reduction of potential hazardous effects of 21 MPs, were determined with EDIP 2003 and USEtox for both treatment scenarios. The estimated benefits were negligible in comparison to the environmental burden caused by the treatments, thus would not be justified from a global LCA impact-benefit perspective. However, because of several uncertainties and lack of data, the inclusion of treatment benefits in LCAs for drinking water purification requires further research.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Anaerobic digestion of biowaste in Indian municipalities. Effects on energy, fertilizers, water and the local environment
    (Elsevier, 07/2021) Gross, Thomas; Breitenmoser, Lena; Hugi, Christoph; Wintgens, Thomas [in: Resources, Conservation and Recycling]
    Anaerobic digestion (AD) of biowaste seems promising to provide renewable energy (biogas) and organic fertilizers (digestate) and mitigate environmental pollution in India. Intersectoral analyses of biowaste management in municipalities are needed to reveal benefits and trade-offs of AD at the implementation-level. Therefore, we applied material flow analyses (MFAs) to quantify effects of potential AD treatment of biowaste on energy and fertilizer supply, water consumption and environmental pollution in two villages, two towns and two cities in Maharashtra. Results show that in villages AD of available manure and crop residues can cover over half of the energy consumption for cooking (EC) and reduce firewood dependency. In towns and cities, AD of municipal biowaste is more relevant for organic fertilizer supply and pollution control because digestate can provide up to several times the nutrient requirements for crop production, but can harm ecosystems when discharged to the environment. Hence, in addition to energy from municipal biowaste - which can supply 4-6% of EC - digestate valorisation seems vital but requires appropriate post-treatment, quality control and trust building with farmers. To minimize trade-offs, water-saving options should be considered because 2-20% of current groundwater abstraction in municipalities is required to treat all available biowaste with 'wet' AD systems compared to <3% with 'dry' AD systems. We conclude that biowaste management with AD requires contextualized solutions in the setting of energy, fertilizers and water at the implementation-level to conceive valorization strategies for all AD products, reduce environmental pollution and minimize trade-offs with water resources.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Implementation of co-processing of waste in cement kilns for Ukraine
    (Igor Sikorsky Kyiv Polytechnic Institute, 2021) Kleshchov, Anton Yosypovych; Hengevoss, Dirk; Hugi, Christoph; Mutz, Dieter; Terentiev, Oleh Markovych; Shevchuk, Nataliia Anatoliivna
    05 - Forschungs- oder Arbeitsbericht
  • Publikation
    Anaerobic digestion of biowastes in India: Opportunities, challenges and research needs
    (Elsevier, 15.04.2019) Breitenmoser, Lena; Gross, Thomas; Huesch, Ragini; Rau, Julius; Hugi, Christoph; Wintgens, Thomas [in: Journal of Environmental Management]
    The quest for improved living conditions in rapidly growing Indian communities puts pressure on natural resources and produces emissions which harm the environment, society and the economy. Current municipal solid waste (MSW) practices are an important example, as most waste remains untreated and is often deposited on unsafe dumpsites or burned on open fires. Anaerobic digestion (AD) is an option to treat the large biodegradable fraction ('biowaste'). In rural parts of India, the technology to supply energy from biogas has been promoted for 30 years. Biowaste treatment in urban MSW management and organic fertilizer ('digestate') production for agriculture via AD have more recently gained attention but with limited success so far. Recent environmental policies in waste, energy, agricultural and other sectors have, however, set important cornerstones for a broader diffusion in the coming years. On the basis of peer-reviewed literature and governmental reports, we identify barriers and enabling factors along the AD chain (biowaste to technology to product utilization), and analyse relevant boundary conditions for the new multi-sector policies. We show that AD implementation has repeatedly failed due to unrealistic assumptions on biowaste quantity and quality, underestimation of the complex biowaste supply chain, unsuitable AD designs and overestimation of economic returns from biogas and digestate. Local knowledge and capacities for planning and process control are lacking in many places and resources required for operation and maintenance in the long run have often been ignored. We found that the multi-facetted value propositions of AD - including biowaste treatment, energy and fertilizer products - have only been partially tapped due to the exclusive focus on biogas. The new sector policies provide important enabling factors for change. Decentralized AD plants operating on a few tons biowaste per day from reliable and manageable sources (e.g. fruit and vegetable markets) could be a more promising step forward than large-scale investments which rely on large biowaste volumes from various sources. The parallel development of biowaste management, planning tools for municipalities, standardized digestate monitoring protocols and studies on simple, low-cost optimization measures for methane recovery from a wide range of biowastes and innovative high-solid AD digester designs will be prerequisites for the long-term future of AD projects.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Environmental potential analysis of co-processing waste in cement kilns
    (Kharkiv State Academy of Physical Culture, 2019) Kleshchov, Anton; Hengevoss, Dirk; Hugi, Christoph [in: Eastern-European Journal of Enterprise Technologies]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Poseidon—Decision Support Tool for Water Reuse
    (Elsevier, 2019) Oertlé, Emmanuel; Hugi, Christoph; Wintgens, Thomas [in: Water]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Umweltnutzen eines Hausmanagers (Custom Energy Manager) im progressiven Energieszenario 2035 der Fachhochschule Nordwestschweiz
    (2019) Hengevoss, Dirk; Hugi, Christoph; Kunz, Dominique [in: FHNW - Fachhochschule Nordwestschweiz - Hochschule für Life Sciences]
    04A - Beitrag Sammelband
  • Publikation
    Methane potential from municipal biowaste: Insights from six communities in Maharashtra, India
    (Elsevier, 04/2018) Breitenmoser, Lena; Dhar, Hiya; Gross, Thomas; Bakre, Milan; Huesch, Ragini; Hugi, Christoph; Wintgens, Thomas; Kumar, Rakesh; Kumar, Sunil [in: Bioresource Technology]
    Anaerobic digestion (AD) of biowaste can generate biogas with methane (CH4) as energy source and contribute to sustainable municipal solid waste management in India. Characteristic municipal biowastes sampled seasonally from household, fruit and vegetable market and agricultural waste collection points in villages, towns and cities in Maharashtra were analysed to assess the potential as substrate for AD. The mean biochemical methane potential (BMP, at 37 °C) across seasons and community sizes was between 200-260, 175-240 and 101-286 NLCH4 kgvs-1 for household, market and agricultural biowaste, respectively. CH4 yields were comparable in villages, towns and cities. Seasonal variations in CH4 yields were observed for market and agricultural biowaste with highest values during pre-monsoon season. Results underpin that municipal biowaste is a suitable substrate for AD in India. However, low purity of available biowaste resulted in lower CH4 yields compared to recent studies using source-segregated biowaste.
    01A - Beitrag in wissenschaftlicher Zeitschrift