Maintz, Michaela
Lade...
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Maintz
Vorname
Michaela
Name
Maintz, Michaela
2 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 2 von 2
- PublikationTopology-optimized patient-specific osteosynthesis plates(De Gruyter, 02.09.2022) Maintz, Michaela; Seiler, Daniel; Thieringer, Florian M.; de Wild, Michael [in: Current Directions in Biomedical Engineering]Patient-specific osteosynthesis plates can be used to reduce complications related to bone fracture treatment, such as infection, malocclusion and fatigue fractures of plates and screws. However, the implant design process is tedious. We propose a semi-automatic workflow to computationally design patient-specific titanium osteosynthesis plates for mandibular angle fractures. In this process, the plate stiffness is maximized while the mass is reduced. Two plate designs with different numbers of screw holes (implant #1 with four holes, implant #2 with eight holes) were generated with identical topology optimization settings and compared in a finite element model simulating various biomechanical masticatory loads. Differences in von Mises stresses in the implants and screws were observed. The load case of clenching the jaw on the opposite side of the fracture showed the highest stress distribution in implant #1 and higher peak stresses in implant #2. Stress concentrations were observed in sharp corners of the implant and could be reduced using local stress-based topology optimization. We conclude that the design process is an effective method to generate patientspecific implants.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationA multi-criteria assessment strategy for 3D printed porous polyetheretherketone (PEEK) patient-specific implants for orbital wall reconstruction(MDPI, 13.08.2021) Sharma, Neha; Welker, Dennis; Aghlmandi, Soheila; Maintz, Michaela; Zeilhofer, Hans-Florian; Honigmann, Philipp; Seifert, Thomas; Thieringer, Florian [in: Journal of Clinical Medicine]Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient’s unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor.01A - Beitrag in wissenschaftlicher Zeitschrift