Rabiei, Ehsan

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Rabiei
Vorname
Ehsan
Name
Ehsan Rabiei

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Areal rainfall estimation using moving cars. Computer experiments including hydrological modeling
    (Copernicus, 26.09.2016) Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel; Wallner, Markus [in: Hydrology and Earth System Sciences]
    The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rain rate. The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of data, i.e., RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not only assessed for areal rainfall estimation performance but also for use in hydrological modeling. Considering measurement errors derived from laboratory experiments, the result shows that the RCs provide useful additional information for areal rainfall estimation as well as for hydrological modeling. Moreover, by testing larger uncertainties for RCs, they observed to be useful up to a certain level for areal rainfall estimation and discharge simulation.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Applying bias correction for merging rain gauge and radar data
    (Elsevier, 13.01.2015) Rabiei, Ehsan; Haberlandt, Uwe [in: Journal of Hydrology]
    Weather radar provides areal rainfall information with very high temporal and spatial resolution. Radar data has been implemented in several hydrological applications despite the fact that the data suffers from varying sources of error. Several studies have attempted to propose methods for solving these problems. Additionally, weather radar usually underestimates or overestimates the rainfall amount. In this study, a new method is proposed for correcting radar data by implementing the quantile mapping bias correction method. Then, the radar data is merged with observed rainfall by conditional merging and kriging with external drift interpolation techniques. The merging product is analysed regarding the sensitivity of the two investigated methods to the radar data quality. After implementing bias correction, not only did the quality of the radar data improve, but also the performance of the interpolation techniques using radar data as additional information. In general, conditional merging showed greater sensitivity to radar data quality, but performed better than all the other interpolation techniques when using bias corrected radar data. Furthermore, a seasonal variation of interpolation performances has in general been observed. A practical example of using radar data for disaggregating stations from daily to hourly temporal resolution is also proposed in this study.
    01A - Beitrag in wissenschaftlicher Zeitschrift