Jordan, Denis
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse
Silage bale detection for the «Cultivable Area» update of the Cantonal Agricultural Office, Thurgau
2022-09, Adrian F. Meyer, Jordan, Denis
In Switzerland direct subsidies are paid to farms for sustainable agricultural practice. The cultivable agricultural area layer (German: Landwirtschaftliche Nutzfläche, LN) serves as an annual basis for the calculation of these contributions at the Swiss cantonal agricultural offices. Material deposits like silage bale stacks are usually excluded from the LN. Therefore, the canton of Thurgau could profit from a spatial vector layer indicating locations and area consumption extent of silage bale stacks intersecting with the LN perimeter.
Criticality creates a functional platform for network transitions between internal and external processing modes in the human brain
2021, Kim, Minkyung, Kim, Hyoungkyu, Huang, Zirui, Mashour, George A., Jordan, Denis, Ilg, Rüdiger, Lee, UnCheol
Continuous switching between internal and external modes in the brain appears important for generating models of the self and the world. However, how the brain transitions between these two modes remains unknown. We propose that a large synchronization fluctuation of brain networks, emerging only near criticality (i.e., a balanced state between order and disorder), spontaneously creates temporal windows with distinct preferences for integrating the network’s internal information or for processing external stimuli. Using a computational model, electroencephalography (EEG) analysis, and functional magnetic resonance imaging (fMRI) analysis during alterations of consciousness in humans, we report that synchronized and incoherent networks, respectively, bias toward internal and external information with specific network configurations. In the brain network model and EEG-based network, the network preferences are the most prominent at criticality and in conscious states associated with the bandwidth 4−12 Hz, with alternating functional network configurations. However, these network configurations are selectively disrupted in different states of consciousness such as general anesthesia, psychedelic states, minimally conscious states, and unresponsive wakefulness syndrome. The network preference for internal information integration is only significant in conscious states and psychedelic states, but not in other unconscious states, suggesting the importance of internal information integration in maintaining consciousness. The fMRI co-activation pattern analysis shows that functional networks that are sensitive to external stimuli–such as default mode, dorsal attentional, and frontoparietal networks–are activated in incoherent states, while insensitive networks, such as global activation and deactivation networks, are dominated in highly synchronized states. We suggest that criticality produces a functional platform for the brain’s capability for continuous switching between two modes, which is crucial for the emergence of consciousness.
Investigating roundabout properties and bicycle accident occurrence at Swiss roundabouts: A logistic regression approach
2019, Hollenstein, Daria, Hess, Martin, Jordan, Denis, Bleisch, Susanne
The positive effects of active mobility on mental and physical health as well as on air quality are widely acknowledged. Increasing the share of active travel is therefore an aim in many countries. Providing bicycle-safe infrastructure is one way to promote cycling. Roundabouts are a common traffic infrastructure and are supposed to facilitate safe and smooth traffic flow. However, data on road traffic accidents indicate an over-proportional involvement of cyclists in accidents at roundabouts. In the present study, the influence of roundabout geometry and traffic flow on bicycle accident occurrence was investigated using a logistic regression approach on twelve parameters of N = 294 mostly small- and mini-sized single-lane roundabouts in the Canton of Berne, Switzerland. Average weekday motorized traffic was identified as a major factor in explaining bicycle accident occurrence at roundabouts. Further, the radius of the central island, the location of the roundabout (in town vs. out of town) and the number of legs were significantly related to bicycle accident occurrence. While these results are in general agreement with findings from similar studies, the findings regarding the central island’s radius and the number of legs underpin the need for roundabout type-specific studies: Some parameters may not prove relevant in intermediate- to large-sized roundabouts, but become critical in small or mini roundabouts, which are common in Switzerland and numerous in the present sample.
Dynamic patterns of global brain communication differentiate conscious from unconscious patients after severe brain injury
2021, Golkowski, Daniel, Willnecker, Rebecca, Rösler, Jennifer, Ranft, Andreas, Schneider, Gerhard, Jordan, Denis, Ilg, Rüdiger
The neurophysiology of the subjective sensation of being conscious is elusive; therefore, it remains controversial how consciousness can be recognized in patients who are not responsive but seemingly awake. During general anesthesia, a model for the transition between consciousness and unconsciousness, specific covariance matrices between the activity of brain regions that we call patterns of global brain communication reliably disappear when people lose consciousness. This functional magnetic imaging study investigates how patterns of global brain communication relate to consciousness and unconsciousness in a heterogeneous sample during general anesthesia and after brain injury. First, we describe specific patterns of global brain communication during wakefulness that disappear during propofol and sevoflurane general anesthesia. Second, we search for these patterns in a cohort of unresponsive wakeful patients and unmatched healthy controls in order to evaluate their potential use in clinical practice. We found that patterns of global brain communication characterized by high covariance in sensory and motor areas or low overall covariance and their dynamic change were strictly associated with intact consciousness in this cohort. In addition, we show that the occurrence of these two patterns is significantly related to activity within the frontoparietal network of the brain, a network known to play a crucial role in conscious perception. We propose that this approach potentially recognizes consciousness in the clinical routine setting.
Relationship of critical dynamics, functional connectivity, and states of consciousness in large-scale human brain networks
2019, Lee, Heonsoo, Golkowski, Daniel, Jordan, Denis, Berger, Sebastian, Ilg, Rüdiger, Lee, Joseph, Mashour, George A., Lee, UnCheol, Avidan, Michael S., Blain-Moraes, Stefanie, Golmirzaie, Goodarz, Hardie, Randall, Hogg, Rosemary, Janke, Ellen, Kelz, Max B., Maier, Kaitlyn, Mashour, George A., Maybrier, Hannah, McKinstry-Wu, Andrew, Muench, Maxwell, Ochroch, Andrew, Palanca, Ben J.A., Picton, Paul, Schwarz, E. Marlon, Tarnal, Vijay, Vanini, Giancarlo, Vlisides, Phillip E.
Recent modeling and empirical studies support the hypothesis that large-scale brain networks function near a critical state. Similar functional connectivity patterns derived from resting state empirical data and brain network models at criticality provide further support. However, despite the strong implication of a relationship, there has been no principled explanation of how criticality shapes the characteristic functional connectivity in large-scale brain networks. Here, we hypothesized that the network science concept of partial phase locking is the underlying mechanism of optimal functional connectivity in the resting state. We further hypothesized that the characteristic connectivity of the critical state provides a theoretical boundary to quantify how far pharmacologically or pathologically perturbed brain connectivity deviates from its critical state, which could enable the differentiation of various states of consciousness with a theory-based metric. To test the hypothesis, we used a neuroanatomically informed brain network model with the resulting source signals projected to electroencephalogram (EEG)-like sensor signals with a forward model. Phase lag entropy (PLE), a measure of phase relation diversity, was estimated and the topography of PLE was analyzed. To measure the distance from criticality, the PLE topography at a critical state was compared with those of the EEG data from baseline consciousness, isoflurane anesthesia, ketamine anesthesia, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state. We demonstrate that the partial phase locking at criticality shapes the functional connectivity and asymmetric anterior-posterior PLE topography, with low (high) PLE for high (low) degree nodes. The topographical similarity and the strength of PLE differentiates various pharmacologic and pathologic states of consciousness. Moreover, this model-based EEG network analysis provides a novel metric to quantify how far a pharmacologically or pathologically perturbed brain network is away from critical state, rather than merely determining whether it is in a critical or non-critical state.
Criticality creates a functional platform for network transitions between internal and external processing modes in the human brain
2021, Kim, Minkyung, Kim, Hyoungkyu, Huang, Zirui, Mashour, George A., Jordan, Denis, Ilg, Rüdiger, Lee, UnCheol
Continuous switching between internal and external modes in the brain appears important for generating models of the self and the world. However, how the brain transitions between these two modes remains unknown. We propose that a large synchronization fluctuation of brain networks, emerging only near criticality (i.e., a balanced state between order and disorder), spontaneously creates temporal windows with distinct preferences for integrating the network’s internal information or for processing external stimuli. Using a computational model, electroencephalography (EEG) analysis, and functional magnetic resonance imaging (fMRI) analysis during alterations of consciousness in humans, we report that synchronized and incoherent networks, respectively, bias toward internal and external information with specific network configurations. In the brain network model and EEG-based network, the network preferences are the most prominent at criticality and in conscious states associated with the bandwidth 4−12 Hz, with alternating functional network configurations. However, these network configurations are selectively disrupted in different states of consciousness such as general anesthesia, psychedelic states, minimally conscious states, and unresponsive wakefulness syndrome. The network preference for internal information integration is only significant in conscious states and psychedelic states, but not in other unconscious states, suggesting the importance of internal information integration in maintaining consciousness. The fMRI co-activation pattern analysis shows that functional networks that are sensitive to external stimuli–such as default mode, dorsal attentional, and frontoparietal networks–are activated in incoherent states, while insensitive networks, such as global activation and deactivation networks, are dominated in highly synchronized states. We suggest that criticality produces a functional platform for the brain’s capability for continuous switching between two modes, which is crucial for the emergence of consciousness.
Teaching ordinal patterns to a computer. Efficient encoding algorithms based on the Lehmer code
2019, Berger, Sebastian, Kravtsiv, Andrii, Schneider, Gerhard, Jordan, Denis
Ordinal patterns are the common basis of various techniques used in the study of dynamical systems and nonlinear time series analysis. The present article focusses on the computational problem of turning time series into sequences of ordinal patterns. In a first step, a numerical encoding scheme for ordinal patterns is proposed. Utilising the classical Lehmer code, it enumerates ordinal patterns by consecutive non-negative integers, starting from zero. This compact representation considerably simplifies working with ordinal patterns in the digital domain. Subsequently, three algorithms for the efficient extraction of ordinal patterns from time series are discussed, including previously published approaches that can be adapted to the Lehmer code. The respective strengths and weaknesses of those algorithms are discussed, and further substantiated by benchmark results. One of the algorithms stands out in terms of scalability: its run-time increases linearly with both the pattern order and the sequence length, while its memory footprint is practically negligible. These properties enable the study of high-dimensional pattern spaces at low computational cost. In summary, the tools described herein may improve the efficiency of virtually any ordinal pattern-based analysis method, among them quantitative measures like permutation entropy and symbolic transfer entropy, but also techniques like forbidden pattern identification. Moreover, the concepts presented may allow for putting ideas into practice that up to now had been hindered by computational burden. To enable smooth evaluation, a function library written in the C programming language, as well as language bindings and native implementations for various numerical computation environments are provided in the supplements.