Hettich, Timm

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Hettich
Vorname
Timm
Name
Hettich, Timm

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Validation of a commercial enzyme-linked immunosorbent assay for allopregnanolone in the saliva of healthy pregnant women
    (MDPI, 27.09.2022) Grötsch, Maria Katharina; Wietor, Denise Margret; Hettich, Timm; Ehlert, Ulrike [in: Biomolecules]
    Enzyme-linked immunosorbent assays (ELISAs) for saliva are simple, non-invasive methods for hormone detection. Allopregnanolone (ALLO) is a neuroactive steroid hormone that plays a crucial role in the aetiology of reproductive mood disorders. To better understand the relationship between ALLO and mood, a validated method to measure peripheral hormone levels is required. Currently, there is no commercially available ELISA with which to measure ALLO in saliva. We validated two ELISAs, developed for use with blood, with the saliva samples of 25 pregnant women, examining the range and sensitivity, intra- and inter-assay precision, parallelism, linearity of dilution, and recovery. The samples were simultaneously analysed using the liquid-chromatography–mass-spectrometry (LC-MS) method. The kits differed in range (31.2–2000 pg/mL vs. 1.6–100 ng/mL) and sensitivity (<9.5 pg/mL vs. 0.9 ng/mL), with the latter showing significant matrix effects and the former fulfilling the acceptance criteria of all the parameters. The concentrations measured with LC–MS were below the lower limit of quantification (<1.0 ng/mL) and no signal was detected. One of the tested ELISAs is a valid method for detecting ALLO in the saliva of pregnant women. It has a suitable measurement range and higher sensitivity than the conventional LC–MS method.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Whole-genome sequence-informed MALDI-TOF MS diagnostics reveal importance of Klebsiella oxytoca group in invasive infections: a retrospective clinical study
    (Springer, 2021) Cuenod, Aline; Wüthrich, Daniel; Seth-Smith, Helena; Ott, Chantal; Gehringer, Christian; Foucaul, Frederic; Mouchet, Roxanne; Kassim, Ali; Revathi, Gunturu; Vogt, Deborah; von Felten, Stefanie; Bassetti, Stefano; Tschudin-Sutter, Sarah; Hettich, Timm; Schlotterbeck, Götz; Homberger, Christina; Casanova, Carlo; Moran-Gilad, Jakob; Sagi, Orli; Rodriguez-Sanchez, Belen; Müller, Franco; Aerni, Martina; Gaia, Valeria; van Dessel, Helke; Kampinga, Greetje; Müller, Claudia; Daubenberger, Claudia; Pflüger, Valentin; Egli, Adrian [in: Genome Medicine]
    Background Klebsiella spp. are opportunistic pathogens which can cause severe infections, are often multi-drug resistant and are a common cause of hospital-acquired infections. Multiple new Klebsiella species have recently been described, yet their clinical impact and antibiotic resistance profiles are largely unknown. We aimed to explore Klebsiella group- and species-specific clinical impact, antimicrobial resistance (AMR) and virulence. Methods We analysed whole-genome sequence data of a diverse selection of Klebsiella spp. isolates and identified resistance and virulence factors. Using the genomes of 3594 Klebsiella isolates, we predicted the masses of 56 ribosomal subunit proteins and identified species-specific marker masses. We then re-analysed over 22,000 Matrix-Assisted Laser Desorption Ionization - Time Of Flight (MALDI-TOF) mass spectra routinely acquired at eight healthcare institutions in four countries looking for these species-specific markers. Analyses of clinical and microbiological endpoints from a subset of 957 patients with infections from Klebsiella species were performed using generalized linear mixed-effects models. Results Our comparative genomic analysis shows group- and species-specific trends in accessory genome composition. With the identified species-specific marker masses, eight Klebsiella species can be distinguished using MALDI-TOF MS. We identified K. pneumoniae (71.2%; n = 12,523), K. quasipneumoniae (3.3%; n = 575), K. variicola (9.8%; n = 1717), “K. quasivariicola” (0.3%; n = 52), K. oxytoca (8.2%; n = 1445), K. michiganensis (4.8%; n = 836), K. grimontii (2.4%; n = 425) and K. huaxensis (0.1%; n = 12). Isolates belonging to the K. oxytoca group, which includes the species K. oxytoca, K. michiganensis and K. grimontii, were less often resistant to 4th-generation cephalosporins than isolates of the K. pneumoniae group, which includes the species K. pneumoniae, K. quasipneumoniae, K. variicola and “K. quasivariicola” (odds ratio = 0.17, p < 0.001, 95% confidence interval [0.09,0.28]). Within the K. pneumoniae group, isolates identified as K. pneumoniae were more often resistant to 4th-generation cephalosporins than K. variicola isolates (odds ratio = 2.61, p = 0.003, 95% confidence interval [1.38,5.06]). K. oxytoca group isolates were found to be more likely associated with invasive infection to primary sterile sites than K. pneumoniae group isolates (odds ratio = 2.39, p = 0.0044, 95% confidence interval [1.05,5.53]). Conclusions Currently misdiagnosed Klebsiella spp. can be distinguished using a ribosomal marker-based approach for MALDI-TOF MS. Klebsiella groups and species differed in AMR profiles, and in their association with invasive infection, highlighting the importance for species identification to enable effective treatment options.
    01A - Beitrag in wissenschaftlicher Zeitschrift