Schumacher, Ralf

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Schumacher
Vorname
Ralf
Name
Schumacher, Ralf

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
Vorschaubild nicht verfügbar
Publikation

Patient-specific hip prostheses designed by surgeons

2016-09-30, Coigny, Florian, Todor, Adrian, Rotaru, Horatiu, Schumacher, Ralf, Schkommodau, Erik

Patient-specific bone and joint replacement implants lead to better functional and aesthetic results than conventional methods [1], [2], [3]. But extracting 3D shape information from CT Data and designing individual implants is demanding and requires multiple surgeon-to-engineer interactions. For manufacturing purposes, Additive Manufacturing offers various advantages, especially for low volume manufacturing parts, such as patient specific implants. To ease these new approaches and to avoid surgeon-to-engineer interactions a new design software approach is needed which offers highly automated and user friendly planning steps.

Vorschaubild nicht verfügbar
Publikation

Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: A histological and µCT study in the rabbit

2013, de Wild, Michael, Schumacher, Ralf, Kyrill, Maier, Schkommodau, Erik, Thoma, Daniel, Bredell, Marius, Kruse, Astrid, Grätz, Klaus, Weber, Franz

The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting. The aim of this study was to determine the mechanical properties and potential of bone formation of light weight implants generated by selective laser melting (SLM). We mainly focused on osteoconduction, as this is a key feature in bone healing and could serve as a back-up for osteoinduction and cell transplantation strategies. To that end, defined implants were produced by SLM, and their surfaces were left untreated, sandblasted, or sandblasted/acid etched. In vivo bone formation with the different implants was tested throughout calvarial defects in rabbits and compared with untreated defects. Analysis by micro computed tomography (µCT) and histomorphometry revealed that all generatively produced porous Ti structures were well osseointegrated into the surrounding bone. The histomorphometric analysis revealed that bone formation was significantly increased in all implant-treated groups compared with untreated defects and significantly increased in sand blasted implants compared with untreated ones. Bone bridging was significantly increased in sand blasted acid-etched scaffolds. Therefore, scaffolds manufactured by SLM should be surface treated. Bone augmentation beyond the original bone margins was only seen in implant-treated defects, indicating an osteoconductive potential of the implants that could be utilized clinically for bone augmentation purposes. Therefore, designed porous, lightweight structures have potential for bone regeneration and augmentation purposes, especially when complex and patient-specific geometries are essential.

Vorschaubild nicht verfügbar
Publikation

Degradable Mg scaffolds produced by selective laser melting (P1035)

2016-05, Rüegg, Jasmine, Böhringer, Stephan, Kessler, Anja, Schumacher, Ralf, Schkommodau, Erik, de Wild, Michael

Vorschaubild nicht verfügbar
Publikation

Patient-specific hip prostheses designed by surgeons

2015, Coigny, Florian, Todor, Adrian, Rotaru, Horatiu, Schumacher, Ralf, Schkommodau, Erik