Effects of relative humidity on aerosol light scattering. results from different European sites

dc.contributor.authorZieger, Paul
dc.contributor.authorFierz-Schmidhauser, Rahel
dc.contributor.authorWeingartner, Ernest
dc.contributor.authorBaltensperger, Urs
dc.date.accessioned2024-02-09T08:37:48Z
dc.date.available2024-02-09T08:37:48Z
dc.date.issued2013
dc.description.abstractThe effect of aerosol water uptake on the aerosol particle light scattering coefficient (σsp) is described in this study by comparing measurements from five European sites: the Jungfraujoch, located in the Swiss Alps at 3580 m a.s.l.; Ny-Ålesund, located on Spitsbergen in the Arctic; Mace Head, a coastal site in Ireland; Cabauw, a rural site in the Netherlands; and Melpitz, a regional background site in Eastern Germany. These sites were selected according to the aerosol type usually encountered at that location. The scattering enhancement factor f(RH, λ) is the key parameter to describe the effect of water uptake on the particle light scattering. It is defined as the σsp(RH) at a certain relative humidity (RH) and wavelength λ divided by its dry value. f(RH) at the five sites varied widely, starting at very low values of f(RH = 85%, λ = 550 nm) around 1.28 for mineral dust, and reaching up to 3.41 for Arctic aerosol. Hysteresis behavior was observed at all sites except at the Jungfraujoch (due to the absence of sea salt). Closure studies and Mie simulations showed that both size and chemical composition determine the magnitude of f(RH). Both parameters are also needed to successfully predict f(RH). Finally, the measurement results were compared to the widely used aerosol model, OPAC (Hess et al., 1998). Significant discrepancies were seen, especially at intermediate RH ranges; these were mainly attributed to inappropriate implementation of hygroscopic growth in the OPAC model. Replacement of the hygroscopic growth with values from the recent literature resulted in a clear improvement of the OPAC model.
dc.identifier.doi10.5194/acp-13-10609-2013
dc.identifier.issn1680-7324
dc.identifier.issn1680-7316
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/44372
dc.identifier.urihttps://doi.org/10.26041/fhnw-8173
dc.issue21
dc.language.isoen
dc.publisherCopernicus
dc.relation.ispartofAtmospheric Chemistry and Physics
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialGöttingen
dc.subject.ddc550 - Geowissenschaften
dc.titleEffects of relative humidity on aerosol light scattering. results from different European sites
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume13
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Technik und Umwelt FHNWde_CH
fhnw.affiliation.institutlnstitut für Sensorik und Elektronikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination10609–10631
fhnw.publicationStatePublished
relation.isAuthorOfPublication05dd9a19-7a24-4325-805a-2d121483b168
relation.isAuthorOfPublication.latestForDiscovery05dd9a19-7a24-4325-805a-2d121483b168
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
acp-13-10609-2013.pdf
Größe:
3.03 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: