Covid-19 superspreading. lessons from simulations on an empirical contact network
dc.contributor.author | Hilfiker, Lorenz | |
dc.contributor.author | Sterchi, Martin | |
dc.date.accessioned | 2024-04-04T06:58:58Z | |
dc.date.available | 2024-04-04T06:58:58Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Infectious individuals who cause an extraordinarily large number of secondary infections are colloquially referred to as superspreaders. Their pivotal role for the transmission of Covid-19 has been exemplified by now infamous cases such as the Washington choir practice, where one infectious individual caused 52 secondary infections [1]. In order to formally analyse superspreading, we denote by Z the individual reproduction number. In a fully susceptible population, the mean mZ is known as the basic reproduction number R0. Based on branching arguments and assuming a well-mixed population, the distribution of Z is typically modelled by a negative binomial distribution whose variance mZ(1+mZ=kZ) is characterised by the dispersion parameter kZ [2]. Empirical evidence suggests that Covid-19 exhibits a particularly wide distribution of Z, with the right tail representing superspreading events. In situations without interventions, the dispersion parameter kZ was estimated in the range 0.04 - 0.2 [3, 4]. Some studies even found evidence for a fat tailed Z-distribution, possibly a power law with the exponent close to 1 [5, 6]. The underlying mechanisms for the emergence of this level of heterogeneity are difficult to establish. A priori, network effects could play a role, as suggested in [5]. A more frequent line of reasoning focuses on physiological or biological factors: wet pronunciation, loud speech, frequent coughing or higher viral loads could result in some infected individuals being inherently more prone to spread the disease than others during an encounter with a susceptible individual [7]. Combining both lines of thought, the study in [8] shows that individual variation in infectiousness indeed leads to higher variance of Z on some standard static network models. However, no previous study has investigated heterogeneities of the Z-distribution on empirical contact networks. Therefore, we provide preliminary simulation results based on one realistic temporal social contact network and gather further evidence that the key to finding Z-distributions in alignment with empirical data is to allow for individual variation in infectiousness. | |
dc.event | 10th International Conference on Complex Networks and their Applications | |
dc.event.end | 2021-12-02 | |
dc.event.start | 2021-11-30 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/43156 | |
dc.language.iso | en | |
dc.spatial | Madrid | |
dc.subject.ddc | 330 - Wirtschaft | |
dc.title | Covid-19 superspreading. lessons from simulations on an empirical contact network | |
dc.type | 06 - Präsentation | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.ReviewType | Anonymous ex ante peer review of an abstract | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
fhnw.affiliation.institut | Institut für Unternehmensführung | de_CH |
relation.isAuthorOfPublication | 8fd97bed-9fae-445e-bf5b-6d2e87c0eab4 | |
relation.isAuthorOfPublication.latestForDiscovery | 8fd97bed-9fae-445e-bf5b-6d2e87c0eab4 |
Dateien
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 1.36 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: