Anomaly detection in railway infrastructure

dc.contributor.authorMorandi, David
dc.contributor.authorJüngling, Stephan
dc.date.accessioned2024-04-19T12:23:18Z
dc.date.available2024-04-19T12:23:18Z
dc.date.issued2021
dc.description.abstractIn order to keep complex railway systems fail-safe, sophisticated maintenance of the rolling stock and infrastructure are most essential. Although AI-based predictive maintenance systems exist in many different industries, there is still quite large potential for different application scenarios. The current research shows such an example, where machine learning can be applied to detect anomalies in the pantograph-catenary system by using a simple convolutional neural network that is able to detect arc ignitions during train operation. The paper provides some insights into the process of the system development life cycle. Starting from the initial idea to use machine learning for anomaly detection, over the system design of a prototype and the training of the Keras-based machine-learning model, up until the evaluation of the conducted experiments. The arcVision system prototype provides valuable insights into how a predictive maintenance process could be established by combining the results from the machine-learning model with rules and insights from manual inspections.
dc.description.urihttps://ceur-ws.org/Vol-2846/
dc.eventAAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021)
dc.event.end2021-03-24
dc.event.start2021-03-22
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43124
dc.identifier.urihttps://doi.org/10.26041/fhnw-7089
dc.language.isoen
dc.relation.ispartofProceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialPalo Alto
dc.subject.ddc330 - Wirtschaft
dc.titleAnomaly detection in railway infrastructure
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryDiamond
fhnw.publicationStatePublished
relation.isAuthorOfPublication4e077e87-2728-4c23-aa6b-86dbce748d79
relation.isAuthorOfPublicationccc10225-9dbf-489d-8ea2-5b512f52637a
relation.isAuthorOfPublication.latestForDiscoveryccc10225-9dbf-489d-8ea2-5b512f52637a
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Morandi_Juengling_Anomaly_detection_in_railway_infrastructure_2021.pdf
Größe:
1.51 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: