Fuzzy Time Series Methods for Forecasting
Lade...
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2025
Typ der Arbeit
Master
Studiengang
Sammlung
Typ
11 - Studentische Arbeit
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Hochschule für Wirtschaft FHNW
Verlagsort / Veranstaltungsort
Olten
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The rapid growth of time-series data in domains such as energy, finance, and IoT has intensified the trade-off between model interpretability and forecasting performance. Fuzzy Time Series (FTS) methods offer transparent, rule-based forecasts but lack systematic comparison against modern neural and linear approaches across varied real-world settings.
Schlagwörter
Fachgebiet (DDC)
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Open Access-Status
Lizenz
Zitation
Vakayil, S. (2025). Fuzzy Time Series Methods for Forecasting [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/54867