Social and Regional Factors Predict the Likelihood of Admission to a Nursing Home After Acute Hospital Stay in Elderly People with Chronic Health Conditions: A Multilevel Analysis Using Routinely Collected Hospital and Census Data in Switzerland

dc.accessRightsAnonymous*
dc.contributor.authorBachmann, Nicole
dc.contributor.authorZumbrunn, Andrea
dc.contributor.authorBayer-Oglesby, Lucy
dc.date.accessioned2022-01-12T13:08:56Z
dc.date.available2022-01-12T13:08:56Z
dc.date.issued2021-12-15
dc.description.urihttps://www.researchsquare.com/article/rs-1108098/v1en_US
dc.identifier.doihttps://doi.org/10.21203/rs.3.rs-1108098/v1
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33185
dc.identifier.urihttps://doi.org/10.26041/fhnw-4071
dc.language.isoenen_US
dc.publisherHochschule für Soziale Arbeit FHNWen_US
dc.rightsAttribution-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/us/en_US
dc.subjectAlteren_US
dc.subjectchronische Gesundheiten_US
dc.subjectKrankenhausen_US
dc.subjectPflegeheimen_US
dc.subjectsoziale Ungleichheiten_US
dc.subjectOlder ageen_US
dc.subjectHospital dischargeen_US
dc.subjectNursing homeen_US
dc.subjectRegional inequalityen_US
dc.subjectSocial inequalityen_US
dc.subjectMultilevel analysisen_US
dc.subjectRetrospective cohorten_US
dc.titleSocial and Regional Factors Predict the Likelihood of Admission to a Nursing Home After Acute Hospital Stay in Elderly People with Chronic Health Conditions: A Multilevel Analysis Using Routinely Collected Hospital and Census Data in Switzerlanden_US
dc.type05 - Forschungs- oder Arbeitsbericht*
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeNo peer reviewen_US
fhnw.affiliation.hochschuleHochschule für Soziale Arbeitde_CH
fhnw.affiliation.institutInstitut Soziale Arbeit und Gesundheitde_CH
fhnw.publicationStatePre-Printen_US
relation.isAuthorOfPublication9718a285-11b3-49e7-9da2-56c8506e2328
relation.isAuthorOfPublication1630cf0a-d6c6-446d-8fa5-8b1ba02a91b9
relation.isAuthorOfPublication017c0337-409d-4019-9982-c988f4fdea67
relation.isAuthorOfPublication.latestForDiscovery017c0337-409d-4019-9982-c988f4fdea67
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Bachmann_Zumbrunn_Bayer_2021.pdf
Größe:
607.18 KB
Format:
Adobe Portable Document Format
Beschreibung: