Maximizing the likelihood of detecting outbreaks in temporal networks

dc.contributor.authorSterchi, Martin
dc.contributor.authorSarasua, Cristina
dc.contributor.authorGrütter, Rolf
dc.contributor.authorBernstein, Abraham
dc.contributor.editorCherifi, Hocine
dc.contributor.editorGaito, Sabrina
dc.contributor.editorMendes, José Fernendo
dc.contributor.editorMoro, Esteban
dc.contributor.editorRocha, Luis Mateus
dc.date.accessioned2024-04-24T06:19:58Z
dc.date.available2024-04-24T06:19:58Z
dc.date.issued2020
dc.description.abstractEpidemic spreading occurs among animals, humans, or computers and causes substantial societal, personal, or economic losses if left undetected. Based on known temporal contact networks, we propose an outbreak detection method that identifies a small set of nodes such that the likelihood of detecting recent outbreaks is maximal. The two-step procedure involves (i) simulating spreading scenarios from all possible seed configurations and (ii) greedily selecting nodes for monitoring in order to maximize the detection likelihood. We find that the detection likelihood is a submodular set function for which it has been proven that greedy optimization attains at least 63% of the optimal (intractable) solution. The results show that the proposed method detects more outbreaks than benchmark methods suggested recently and is robust against badly chosen parameters. In addition, our method can be used for outbreak source detection. A limitation of this method is its heavy use of computational resources. However, for large graphs the method could be easily parallelized.
dc.event8th International Conference on Complex Networks and their Applications
dc.event.end2019-12-12
dc.event.start2019-12-10
dc.identifier.doihttps://doi.org/10.1007/978-3-030-36683-4_39
dc.identifier.isbn978-3-030-36682-7
dc.identifier.isbn978-3-030-36683-4
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42604
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofComplex networks and their applications VIII. Volume 2 proceedings of the eighth international conference on complex networks and their applications. Complex Networks 2019
dc.relation.ispartofseriesStudies in Computational Intelligence
dc.spatialCham
dc.subject.ddc330 - Wirtschaft
dc.titleMaximizing the likelihood of detecting outbreaks in temporal networks
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination481-493
fhnw.publicationStatePublished
fhnw.seriesNumber882
relation.isAuthorOfPublication8fd97bed-9fae-445e-bf5b-6d2e87c0eab4
relation.isAuthorOfPublication.latestForDiscovery8fd97bed-9fae-445e-bf5b-6d2e87c0eab4
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: