Active querying approach to epidemic source detection on contact networks
Lade...
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2023
Typ der Arbeit
Studiengang
Sammlung
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Scientific Reports
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
13
Ausgabe / Nummer
11363
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Nature
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The problem of identifying the source of an epidemic (also called patient zero) given a network of contacts and a set of infected individuals has attracted interest from a broad range of research communities. The successful and timely identification of the source can prevent a lot of harm as the number of possible infection routes can be narrowed down and potentially infected individuals can be isolated. Previous research on this topic often assumes that it is possible to observe the state of a substantial fraction of individuals in the network before attempting to identify the source. We, on the contrary, assume that observing the state of individuals in the network is costly or difficult and, hence, only the state of one or few individuals is initially observed. Moreover, we presume that not only the source is unknown, but also the duration for which the epidemic has evolved. From this more general problem setting a need to query the state of other (so far unobserved) individuals arises. In analogy with active learning, this leads us to formulate the active querying problem. In the active querying problem, we alternate between a source inference step and a querying step. For the source inference step, we rely on existing work but take a Bayesian perspective by putting a prior on the duration of the epidemic. In the querying step, we aim to query the states of individuals that provide the most information about the source of the epidemic, and to this end, we propose strategies inspired by the active learning literature. Our results are strongly in favor of a querying strategy that selects individuals for whom the disagreement between individual predictions, made by all possible sources separately, and a consensus prediction is maximal. Our approach is flexible and, in particular, can be applied to static as well as temporal networks. To demonstrate our approach’s practical importance, we experiment with three empirical (temporal) contact networks: a network of pig movements, a network of sexual contacts, and a network of face-to-face contacts between residents of a village in Malawi. The results show that active querying strategies can lead to substantially improved source inference results as compared to baseline heuristics. In fact, querying only a small fraction of nodes in a network is often enough to achieve a source inference performance comparable to a situation where the infection states of all nodes are known.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
2045-2322
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Gold
Zitation
STERCHI, Martin, Lorenz HILFIKER, Rolf GRÜTTER und Abraham BERNSTEIN, 2023. Active querying approach to epidemic source detection on contact networks. Scientific Reports. 2023. Bd. 13, Nr. 11363. DOI 10.1038/s41598-023-38282-8. Verfügbar unter: https://doi.org/10.26041/fhnw-7392