Smart Coverage Configurations: Recommender System for Car Insurance

Loading...
Thumbnail Image
Author (Corporation)
Publication date
2018
Typ of student thesis
Master
Course of study
Type
11 - Student thesis
Editors
Editor (Corporation)
Supervisor
Parent work
Special issue
DOI of the original publication
Link
Series
Series number
Volume
Issue / Number
Pages / Duration
Patent number
Publisher / Publishing institution
Hochschule für Wirtschaft FHNW
Place of publication / Event location
Olten
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
Car insurance policies in Zürich Insurance are heavily customizable as customers can choose between a number of coverages and adjust many options to fit their needs. The aim of the thesis is to develop a viable recommendation system solution which optimizes cover option proposals for motor insurance customers using adequacy metrics and feasible loss functions. The dataset provided by Zurich Insurance exhibited two major challenges, namely a high number of classes as well as a highly uneven distribution of number of occurrences per class. Before the model could be developed, the dataset needed to undergo pre-processing, structuring and dimension reduction. Two algorithms were chosen to develop the model: Multinomial Logistic Regression and XGBoost. The first algorithm showed to be challenging to model due to the high number of features. The second algorithm surpassed the model performance of the more traditional MLR model and produced an accuracy of 48.33%. The XGBoost model proved to be a suitable algorithm for the problem statement of Zurich Insurance. The model creates meaningful customer segmentation according to which coverages they purchased. Based on this segmentation it creates accurate recommendations for coverages and deductibles for new customers. The result is a better-informed customer who will not lose his/her time going through offers that do not meet his/her needs.
Keywords
Subject (DDC)
Project
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Review
Open access category
License
Citation
Malhotra, A. (2018). Smart Coverage Configurations: Recommender System for Car Insurance [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/40447