Smart Coverage Configurations: Recommender System for Car Insurance
Lade...
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2018
Typ der Arbeit
Master
Studiengang
Sammlung
Typ
11 - Studentische Arbeit
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Hochschule für Wirtschaft FHNW
Verlagsort / Veranstaltungsort
Olten
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Car insurance policies in Zürich Insurance are heavily customizable as customers can choose between a number of coverages and adjust many options to fit their needs. The aim of the thesis is to develop a viable recommendation system solution which optimizes cover option proposals for motor insurance customers using adequacy metrics and feasible loss functions. The dataset provided by Zurich Insurance exhibited two major challenges, namely a high number of classes as well as a highly uneven distribution of number of occurrences per class. Before the model could be developed, the dataset needed to undergo pre-processing, structuring and dimension reduction. Two algorithms were chosen to develop the model: Multinomial Logistic Regression and XGBoost. The first algorithm showed to be challenging to model due to the high number of features. The second algorithm surpassed the model performance of the more traditional MLR model and produced an accuracy of 48.33%. The XGBoost model proved to be a suitable algorithm for the problem statement of Zurich Insurance. The model creates meaningful customer segmentation according to which coverages they purchased. Based on this segmentation it creates accurate recommendations for coverages and deductibles for new customers. The result is a better-informed customer who will not lose his/her time going through offers that do not meet his/her needs.
Schlagwörter
Fachgebiet (DDC)
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Open Access-Status
Lizenz
Zitation
Malhotra, A. (2018). Smart Coverage Configurations: Recommender System for Car Insurance [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/40447