Modeling bee hive dynamics. Assessing colony health using hive weight and environmental parameters

dc.contributor.authorDegenfellner, Jürgen
dc.contributor.authorTempl, Matthias
dc.date.accessioned2025-01-25T08:57:37Z
dc.date.issued2024
dc.description.abstractOur state-of-the-art methods study hive weight and predict bee health and colony condition using advanced machine learning tools trained with unlabeled data. By integrating methodologies such as signal extraction, similar trend monitoring, principal component analysis, and MM-Regression, our goal is to translate hive weight fluctuations into predictive insights for future hive monitoring systems. In particular, signal extraction methods are used to obtain an interpretable signal and to detect level shifts, exploratory analysis is used to visually detect dissimilar weight trajectories from nearby hives, historical data are used to robustly predict hive weights, and to trigger an alarm when predictions and actual observations differ significantly. Our study shows how these methods can be successfully used to analyze and predict hive weights and underscore the need for future research to accumulate labeled data and to adopt a holistic perspective, incorporating a wider spectrum of influences of hive weight simultaneously.
dc.identifier.doi10.1016/j.compag.2024.108742
dc.identifier.issn0168-1699
dc.identifier.issn1872-7107
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48232
dc.identifier.urihttps://doi.org/10.26041/fhnw-10947
dc.issueC
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofComputers and Electronics in Agriculture
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc330 - Wirtschaft
dc.subject.ddc630 - Landwirtschaft, Veterinärmedizin
dc.titleModeling bee hive dynamics. Assessing colony health using hive weight and environmental parameters
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume218
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryHybrid
fhnw.publicationStatePublished
relation.isAuthorOfPublication8b0a85e1-60d7-48f9-8551-419197a127e7
relation.isAuthorOfPublication.latestForDiscovery8b0a85e1-60d7-48f9-8551-419197a127e7
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
1-s2.0-S0168169924001339-main.pdf
Größe:
4.77 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: