Robust covariance estimators for mean-variance portfolio optimization with transaction lots

dc.contributor.authorRosadi, Dedi
dc.contributor.authorSetiawan, Ezra Putranda
dc.contributor.authorTempl, Matthias
dc.contributor.authorFilzmoser, Peter
dc.date.accessioned2025-01-14T12:40:16Z
dc.date.issued2020
dc.description.abstractThis study presents an improvement to the mean-variance portfolio optimization model, by considering both the integer transaction lots and a robust estimator of the covariance matrices. Four robust estimators were tested, namely the Minimum Covariance Determinant, the S, the MM, and the Orthogonalized Gnanadesikan–Kettenring estimator. These integer optimization problems were solved using genetic algorithms. We introduce the lot turnover measure, a modified portfolio turnover, and the Robust Sharpe Ratio as the measure of portfolio performance. Based on the simulation studies and the empirical results, this study shows that the robust esti- mators outperform the classical MLE when data contain outliers and when the lots have moderate sizes, e.g. 500 shares or less per lot.
dc.identifier.doi10.1016/j.orp.2020.100154
dc.identifier.issn2214-7160
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48335
dc.identifier.urihttps://doi.org/10.26041/fhnw-11050
dc.issue100154
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofOperations Research Perspectives
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc330 - Wirtschaft
dc.titleRobust covariance estimators for mean-variance portfolio optimization with transaction lots
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume7
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublication8b0a85e1-60d7-48f9-8551-419197a127e7
relation.isAuthorOfPublication.latestForDiscovery8b0a85e1-60d7-48f9-8551-419197a127e7
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
1-s2.0-S2214716020300440-main.pdf
Größe:
2.84 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: