Estimation of the Variogram Using Kendall's Tau for a Robust Geostatistical Interpolation
Vorschaubild nicht verfügbar
Autor:innen
Lebrenz, Henning
Bárdossy, András
Autor:in (Körperschaft)
Publikationsdatum
14.01.2017
Typ der Arbeit
Studiengang
Sammlung
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Journal of Hydrologic Engineering
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The estimation of an appropriate variogram is a crucial step toward the description of spatial dependence, the geostatistical interpolation of environmental variables, and the subsequent hydrological engineering. The classical variogram in the literature ideally necessitates a normal distribution of the variable and is not robust against outliers within the data. These presumptions are hardly given under empirical conditions and, therefore, a new estimation method is proposed for the variogram. The new method is based on the description of spatial dependence by the robust rank coefficient τ and generalizes the method from the Gaussian to the general case of empirical distributions. The conversion of the robust estimate using a Monte-Carlo simulation and subsequent quantile-quantile transformation with the empirical marginal distribution performs the generalization. Monthly precipitation data from South Africa serve as the variable and were artificially contaminated with outliers. The effects on the variogram and subsequent geostatistical interpolation were investigated for the proposed, classical, and four existing robust variogram models in this comparative study. The investigation revealed that the proposed variogram describes a distinct spatial dependence structure under empirical conditions, which is robust against outliers. The cross validation of the linear estimator demonstrates that the proposed variogram tends to improve the bias and spread of the resulting error distribution, and hence the quality of the geostatistical interpolation.
Schlagwörter
Fachgebiet (DDC)
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1084-0699
1943-5584
1943-5584
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Lizenz
Zitation
LEBRENZ, Henning und András BÁRDOSSY, 2017. Estimation of the Variogram Using Kendall’s Tau for a Robust Geostatistical Interpolation. Journal of Hydrologic Engineering. 14 Januar 2017. Verfügbar unter: http://hdl.handle.net/11654/25719