How to automate master data management with machine learning?

dc.contributor.authorSchaller, Pascal
dc.contributor.mentorRiesen, Kaspar
dc.contributor.partnerManufacturer, Northwestern Switzerland
dc.date.accessioned2023-12-22T16:31:20Z
dc.date.available2023-12-22T16:31:20Z
dc.date.issued2021
dc.description.abstractInsufficient training, undefined or unclear processes, and the decentralization of subsidiaries in the past result in challenges for the company’s master data management (MDM) and master data quality today. Due to the described sources of the MDM problem, three goals were determined. First, an analysis of the article master data has to be conducted. Second, an identification and recommendation of MDM best practices has to be made. Third, a recommendation of how to proceed, based on the results of the two other objectives, will be given.
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/41141
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialBasel
dc.subject.ddc330 - Wirtschaft
dc.titleHow to automate master data management with machine learning?
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.PublishedSwitzerlandYes
fhnw.StudentsWorkTypeBachelor
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutBachelor of Science
relation.isMentorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isMentorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien