Hydrothermale Karbonisierung von Klärschlamm und Gülle im Labormassstab

Lade...
Vorschaubild
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
18.08.2023
Typ der Arbeit
Bachelor
Studiengang
Bachelor of Science FHNW in Energie- und Umwelttechnik
Typ
11 - Studentische Arbeit
Herausgeber:innen
Herausgeber:in (Körperschaft)
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Hochschule für Technik FHNW
Verlagsort / Veranstaltungsort
Windisch
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
In der Schweiz entspricht das gesamte jährliche, energetische Potential, welches chemisch in Klärschlamm gebunden ist rund 5 PJ. Bei Gülle und Mist sind es knapp 49 PJ. Da Klärschlamm verbrannt werden muss, wird dieser vorab mechanisch entwässert und teilweise noch thermisch getrocknet. Besonders der zweite Schritt der Trocknung benötigt dabei viel Energie, weshalb alternative Möglichkeiten gesucht werden, den Klärschlamm für die Verbrennung aufzubereiten. Auch für überschüssige Gülle, welche nicht zum Düngen auf landwirtschaftlichen Feldern genutzt werden kann, würde sich eine solche Aufbereitung und anschliessende Nutzung als Brennstoff anbieten. Dies wäre besonders auch interessant, wenn in Zukunft durch vermehrtes Nährstoffrecycling einem Teil der Gülle die Funktion als Düngemittel verloren gehen würde. Ein alternatives Verfahren zur Entwässerung nasser Biomasse stellt die hydrothermale Karbonisierung (HTC) dar. In einem Reaktor wird das Substrat typischerweise bei 200 °C und 20 bar Druck innert weniger Stunden in einen braunkohleartigen Festbrennstoff umgewandelt. Dies gelingt, indem hauptsächlich durch Hydrolyse- und Dehydratisierungsreaktionen chemisch gebundenes Wasser und CO2 von der Biomasse abgeschieden werden. Dabei verringert sich die Molekülgrösse, der Kohlenstoffanteil steigt und damit auch der Brennwert. In einer Reihe von HTC-Batchversuchen mit Klärschlamm und Gülle im Labor wurde die Aufkonzentrierung des Trockensubstanzgehalts der Biomasse sowie deren Ansäuerung mit verdünnter Schwefelsäure untersucht. Dafür wurde ein Labordruckreaktor des Modells «kiloclave» von der Firma Büchi AG verwendet. Im Vordergrund der Untersuchungen stand die energetische Nutzung der erhaltenen Karbonisate. Die Ergebnisse wurden wo möglich jeweils mit Resultaten einer kontinuierlich arbeitenden Pilotanlage der Firma Mehli in Chur verglichen. Dabei musste berücksichtigt werden, dass gewisse Parameter wie zum Beispiel der Trockensubstanzgehalt der Ausgangssubstrate, nicht immer bei beiden Systemen identisch waren. Die Ergebnisse zeigten, dass durch die Trockensubstanz-Aufkonzentrierung mehr Energie von der Ausgangs-Biomasse in das Karbonisat überführt werden konnte, da sich besonders auch mehr Feststoffmasse vom Klärschlamm, beziehungsweise der Gülle im Karbonisat wiederfand. Durch eine Ansäuerung der Biomasse liess sich die Massenausbeute hingegen kaum verbessern. Die Brennwerte der Karbonisate waren über alle Versuche hinweg höher als jene der entsprechenden Ausgangssubstrate. Durch die Aufkonzentrierung und die Ansäuerung konnten jedoch nur kleine Steigerungen erreicht werden. Maximal wurde durch die Ansäuerung auf pH 2.0 eine Steigerung von 1.1 MJ/kg für Karbonisat aus Klärschlamm und 0.3 MJ/kg für Karbonisat aus Gülle erzielt. Daraus wurde abgeleitet, dass sich die Trockensubstanz-Aufkonzentrierung zur energetischen Optimierung des HTC-Karbonisats besser eignet als die Ansäuerung. Es muss jedoch berücksichtigt werden, dass sich dadurch auch mehr Organik im Prozesswasser löst und dieses dadurch stärker belastet ist. Es dürfte also auch schwieriger werden, dieses Nebenprodukt für die Einleitung in eine Abwasserreinigungsanlage aufzubereiten. Der Einsatz von Schwefelsäure schien sich zwar für die energetische Optimierung der HTC-Karbonisate nicht zu eignen, jedoch wären hierzu weitere Untersuchungen in Bezug auf die stoffliche Verwertung der Karbonisate interessant. So wurde in einer anderen Studie zum Beispiel eine bessere Löslichkeit von Phosphor in Zusammenhang mit einer Säurezugabe zur Biomasse beobachtet. IV Bei den Verbrennungsversuchen in einem Einzelpelletofen wurde festgestellt, dass der Grenzwert für Stickoxid-Emissionen von Holzfeuerungen mit allen HTC-Karbonisaten deutlich überschritten werden. Der Kohlenstoffmonoxid-Grenzwert wird zwar eingehalten, ist bei den Gülle-Karbonisaten aber um ein Vielfaches höher als bei Holz oder Klärschlamm-Karbonisat. Aus diesen Erkenntnissen lässt sich sagen, dass die untersuchten HTC-Karbonisate nicht für eine herkömmliche Holzfeuerung geeignet sind. Für die Verbrennung sind stickoxidreduzierende Massnahmen nötig wie beispielsweise das Einspritzen von Ammoniak zur Reduktion von NOx zu elementarem Stickstoff. Um die hohen CO-Emissionen bei den Karbonisaten aus Gülle zu senken, könnte zum Beispiel noch eine Abgasrückführung umgesetzt werden, um Kohlenstoffmonoxid in einem zweiten Schritt vollständig zu CO2 zu oxidieren.
Schlagwörter
Fachgebiet (DDC)
620 - Ingenieurwissenschaften und Maschinenbau
660 - Technische Chemie
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Deutsch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Zero Emission
Publikationsstatus
Begutachtung
Open Access-Status
Lizenz
'http://rightsstatements.org/vocab/InC/1.0/'
Zitation
EGOLF, Tim, 2023. Hydrothermale Karbonisierung von Klärschlamm und Gülle im Labormassstab. Windisch: Hochschule für Technik FHNW. Verfügbar unter: https://doi.org/10.26041/fhnw-10701