Feedback-based integration of the whole process of data anonymization in a graphical interface

Vorschaubild
Autor:in (Körperschaft)
Publikationsdatum
2019
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Algorithms
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
12
Ausgabe / Nummer
9
Seiten / Dauer
1-20
Patentnummer
Verlag / Herausgebende Institution
MDPI
Verlagsort / Veranstaltungsort
Basel
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The interactive, web-based point-and-click application presented in this article, allows anonymizing data without any knowledge in a programming language. Anonymization in data mining, but creating safe, anonymized data is by no means a trivial task. Both the methodological issues as well as know-how from subject matter specialists should be taken into account when anonymizing data. Even though specialized software such as sdcMicro exists, it is often difficult for nonexperts in a particular software and without programming skills to actually anonymize datasets without an appropriate app. The presented app is not restricted to apply disclosure limitation techniques but rather facilitates the entire anonymization process. This interface allows uploading data to the system, modifying them and to create an object defining the disclosure scenario. Once such a statistical disclosure control (SDC) problem has been defined, users can apply anonymization techniques to this object and get instant feedback on the impact on risk and data utility after SDC methods have been applied. Additional features, such as an Undo Button, the possibility to export the anonymized dataset or the required code for reproducibility reasons, as well its interactive features, make it convenient both for experts and nonexperts in R—the free software environment for statistical computing and graphics—to protect a dataset using this app.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
005 - Computer Programmierung, Programme und Daten
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1999-4893
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Nein
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Gold
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
MEINDL, Bernhard und Matthias TEMPL, 2019. Feedback-based integration of the whole process of data anonymization in a graphical interface. Algorithms. 2019. Bd. 12, Nr. 9, S. 1–20. DOI 10.3390/a12090191. Verfügbar unter: https://doi.org/10.26041/fhnw-11055