Decision support combining machine learning, knowledge representation and case-based reasoning
Lade...
Autor:in (Körperschaft)
Publikationsdatum
2021
Typ der Arbeit
Studiengang
Typ
04B - Beitrag Konferenzschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021)
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Sun SITE, Informatik V, RWTH Aachen
Verlagsort / Veranstaltungsort
Aachen
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Knowledge and knowledge work are essential for the success of companies nowadays. Decisions are based on knowledge and better knowledge leads to more informed decisions. Therefore, the management of knowledge and support of decision making has increasingly become a source of competitive advantage for organizations. The current research uses a design science research approach (DSR) with the aim to improve the decision making of a knowledge intensive process such as the student admission process, which is done manually until now. In the awareness phase of the DSR process, the case study research method is applied to analyze the decision making and the knowledge that is needed to derive the decisions. Based on the analysis of the application scenario, suitable methods to support decision making were identified. The resulting system design is based on a combination of Case-Based Reasoning (CBR) and Machine Learning (ML). The proposed system design and prototype has been validated using triangulation evaluation, to assess the impact of the proposed system on the application scenario. The evaluation revealed that the additional hints from CBR and ML can assist the deans of the study program to improve the knowledge management and increase the quality, transparency and consistency of the decision-making process in the student application process. Furthermore, the proposed approach fosters the exchange of knowledge among the different process participants involved and codifies previously tacit knowledge to some extent and provides relevant externalized knowledge to decision makers at the required moment. The designed prototype showcases how ML and CBR methodologies can be combined to support decision making in knowledge intensive processes and finally concludes with potential recommendations for future research.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021)
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
22.03.2021
Enddatum der Konferenz
24.03.2021
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Diamond
Zitation
MEHLI, Carlo, Knut HINKELMANN und Stephan JÜNGLING, 2021. Decision support combining machine learning, knowledge representation and case-based reasoning. In: Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021). Aachen: Sun SITE, Informatik V, RWTH Aachen. 2021. Verfügbar unter: https://doi.org/10.26041/fhnw-7090