Robust Unit-Level Small Area Estimation: A Fast Algorithm for Large Datasets

dc.accessRightsAnonymous
dc.audienceSonstige
dc.contributor.authorSchoch, Tobias
dc.date.accessioned2015-10-05T15:43:33Z
dc.date.available2015-10-05T15:43:33Z
dc.date.issued2011-12-01T00:00:00Z
dc.description.abstractSmall area estimation is a topic of increasing importance in official statistics. Although the classical EBLUP method is useful for estimating the small area means efficiently under the normality assumptions, it can be highly influenced by the presence of outliers. Therefore, Sinha and Rao (2009; The Canadian Journal of Statistics) proposed robust estimators/predictors for a large class of unit- and area-level models. We confine attention to the basic unit-level model and discuss a related, but slightly different, robustification. In particular, we develop a fast algorithm that avoids inversion and multiplication of large matrices, and thus permits the user to apply the method to large datasets. In addition, we derive much simpler expressions of the bounded-influence predicting equations to robustly predict the small-area means than Sinha and Rao (2009) did.
dc.identifier.issn1026-597X
dc.identifier.urihttp://hdl.handle.net/11654/9969
dc.language.isoenen_US
dc.publisherAustrian Journal of Statisticsen_US
dc.relation.ispartofAustrian Journal of Statisticsen_US
dc.subjectstatistics
dc.subject.ddc330 - Wirtschaft
dc.subject.ddc659 - Werbung & Public Releations (PR)
dc.titleRobust Unit-Level Small Area Estimation: A Fast Algorithm for Large Datasets
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dspace.entity.typePublication
fhnw.InventedHereunbekannt
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitute for Competitiveness and Communicationde_CH
fhnw.publicationStateUnpublished
relation.isAuthorOfPublication39a57657-8c2e-4332-ac6f-ab07436a9fcb
relation.isAuthorOfPublication.latestForDiscovery39a57657-8c2e-4332-ac6f-ab07436a9fcb
Dateien