Visual analytics of nonverbal behavior to evaluate collaborative group engagement

Typ
06 - Präsentation
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Wien
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Despite rapid advances in AI, computer vision, and the availability of off-the-shelf tools, analyzing and understanding the dynamics of nonverbal behavior (NVB) remains a significant challenge, especially in the analysis of collaborative group engagement. Research areas such as Social Signal Processing aim to leverage computational methods to automatically extract NVB from highvolume, multimodal video, audio, and language data, but with moderate success. These automated approaches rely heavily on large, high-quality training datasets and often face issues related to predicted constructs’ theoretical soundness and context-specific validity. A promising alternative is Visual Analytics (VA), which integrates human reasoning with computational methods for data interpretation. This poster explores a methodological approach using VA to extract and analyze NVB in collaborative learning. We employ state-of-the-art computer vision techniques to generate highresolution time series of facial, hand, and body landmarks from video recordings of small student groups collaboratively solving computer-based tasks. These landmarks are then processed into meaningful NVB signals and visualized to enable exploration and analysis. We also introduce visual-mapping strategies to address the challenges posed by high-dimensional data and the information loss introduced by aggregation. Finally, we demonstrate the potential and limitations of VA to support the analysis of both individual and dyadic NVB, highlighting temporal patterns in head movement and mutual orientation (facing direction) within small-group interactions.
Schlagwörter
Visual analytics, nonverbal behavior, collaborative group engagement, video-based body landmarks
Veranstaltung
IEEE VIS 2025
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
02.11.2025
Enddatum der Konferenz
07.11.2025
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Peer-Review des Abstracts
Open Access-Status
Lizenz
'http://rightsstatements.org/vocab/InC/1.0/'
Zitation
Gasparik, M., Bronowicz, C., & Bleisch, S. (2025, November 5). Visual analytics of nonverbal behavior to evaluate collaborative group engagement. IEEE VIS 2025. https://doi.org/10.26041/fhnw-14206