Decoding DOOH viewability using YOLO for privacy-friendly human silhouette identification on LiDAR point clouds

dc.contributor.authorForster, Anna
dc.contributor.authorLucheroni, Carlo
dc.contributor.authorGürtler, Stefan
dc.date.accessioned2025-07-11T06:38:58Z
dc.date.issued2024
dc.description.abstractTraditional methods for measuring digital out-of-home (DOOH) advertising effectiveness often rely on static data or camera footage, leading to limitations in accuracy and real-time insights. This research proposes a novel approach that leverages the combined power of LiDAR technology and YOLOv8, a state-of-the-art object detection model, to achieve precise and privacy-friendly human silhouette identification for DOOH performance measurement. By extracting 3D point cloud data from LiDAR sensors and employing YOLOv8's efficient object detection capabilities, the model accurately identifies and tracks pedestrians in the vicinity of DOOH displays. This information, combined with LiDAR's performance under varying weather and lighting conditions, offers a significant improvement over traditional methods, providing advertisers with valuable real-time data on audience engagement and campaign effectiveness. The comparison with the same model performance trained on a standard MC-COCO 2017 dataset presented comparable accuracy but faster inference times. Furthermore, the focus on LiDAR data ensures privacy by avoiding the use of facial recognition or other sensitive personal information. This research demonstrates the feasibility and potential of LiDAR-based human silhouette identification for DOOH performance measurement, paving the way for a more data-driven and effective advertising landscape.
dc.event12th International Symposium on Digital Forensics and Security (ISDFS)
dc.event.end2024-04-30
dc.event.start2024-04-29
dc.identifier.doi10.1109/ISDFS60797.2024.10527261
dc.identifier.isbn979-8-3503-3036-6
dc.identifier.isbn979-8-3503-3037-3
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/52070
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2024 12th International Symposium on Digital Forensics and Security (ISDFS)
dc.spatialSan Antonio, Texas
dc.subject.ddc330 - Wirtschaft
dc.subject.ddc004 - Computer Wissenschaften, Internet
dc.titleDecoding DOOH viewability using YOLO for privacy-friendly human silhouette identification on LiDAR point clouds
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination1-6
fhnw.publicationStatePublished
relation.isAuthorOfPublication7e9db598-d5c3-4162-a74c-9ac7fd00c2a8
relation.isAuthorOfPublication.latestForDiscovery7e9db598-d5c3-4162-a74c-9ac7fd00c2a8
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: