Classical and robust regression analysis with compositional data

dc.contributor.authorvan den Boogaart, K. G.
dc.contributor.authorFilzmoser, Peter
dc.contributor.authorHron, Karel
dc.contributor.authorTempl, Matthias
dc.contributor.authorTolosana-Delgado, Raimon
dc.date.accessioned2025-01-14T11:33:32Z
dc.date.issued2021
dc.description.abstractCompositional data carry their relevant information in the relationships (logratios) between the compositional parts. It is shown how this source of information can be used in regression modeling, where the composition could either form the response, or the explanatory part, or even both. An essential step to set up a regression model is the way how the composition(s) enter the model. Here, balance coordinates will be constructed that support an interpretation of the regression coefficients and allow for testing hypotheses of subcompositional independence. Both classical least-squares regression and robust MM regression are treated, and they are compared within different regression models at a real data set from a geochemical mapping project.
dc.identifier.doihttps://doi.org/10.1007/s11004-020-09895-w
dc.identifier.issn1874-8953
dc.identifier.issn1874-8961
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48334
dc.identifier.urihttps://doi.org/10.26041/fhnw-11049
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofMathematical Geosciences
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialLondon
dc.subject.ddc330 - Wirtschaft
dc.subject.ddc510 - Mathematik
dc.titleClassical and robust regression analysis with compositional data
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume53
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryGold
fhnw.pagination823-858
fhnw.publicationStatePublished
relation.isAuthorOfPublication8b0a85e1-60d7-48f9-8551-419197a127e7
relation.isAuthorOfPublication.latestForDiscovery8b0a85e1-60d7-48f9-8551-419197a127e7
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
s11004-020-09895-w.pdf
Größe:
1.75 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: