A multi-criteria assessment strategy for 3D printed porous polyetheretherketone (PEEK) patient-specific implants for orbital wall reconstruction

dc.accessRightsAnonymous*
dc.contributor.authorSharma, Neha
dc.contributor.authorWelker, Dennis
dc.contributor.authorAghlmandi, Soheila
dc.contributor.authorMaintz, Michaela
dc.contributor.authorZeilhofer, Hans-Florian
dc.contributor.authorHonigmann, Philipp
dc.contributor.authorSeifert, Thomas
dc.contributor.authorThieringer, Florian
dc.date.accessioned2022-03-14T09:50:27Z
dc.date.available2022-03-14T09:50:27Z
dc.date.issued2021-08-13
dc.description.abstractPure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient’s unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor.en_US
dc.identifier.doi10.3390/jcm10163563
dc.identifier.issn2077-0383
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33351
dc.identifier.urihttp://dx.doi.org/10.26041/fhnw-4132
dc.issue16en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofJournal of Clinical Medicineen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/en_US
dc.spatialBaselen_US
dc.subjectBlow-outen_US
dc.subjectBiocompatible materialsen_US
dc.subjectComputer-aided designen_US
dc.subjectFinite element analysisen_US
dc.subjectOrbiten_US
dc.subjectImplanten_US
dc.subjectOrbital fractureen_US
dc.subjectPatient-specific modelingen_US
dc.subjectPrintingen_US
dc.subjectThree-dimensionalen_US
dc.titleA multi-criteria assessment strategy for 3D printed porous polyetheretherketone (PEEK) patient-specific implants for orbital wall reconstructionen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume10en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciencesde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryCloseden_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublicationab8b66e8-0f66-4375-82db-a31457ecef60
relation.isAuthorOfPublication.latestForDiscoveryab8b66e8-0f66-4375-82db-a31457ecef60
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
jcm-10-03563-v2.pdf
Größe:
22.02 MB
Format:
Adobe Portable Document Format
Beschreibung: