Anonymization and analysis of geo-referenced demographic and socio-economic data: population, household, and company attributes in the SynPop dataset

dc.contributor.authorRuta, Gabriele Loiacono
dc.contributor.mentorTempl, Matthias
dc.contributor.partnerSchweizerische Bundesbahnen (SBB), Bern
dc.date.accessioned2025-12-15T13:32:46Z
dc.date.issued2025
dc.description.abstractAs of 2025, the Swiss Federal Railways (SBB) use SynPop, a partly synthesized dataset combining demographic, socio-economic, and spatial data from sources like STATPOP and STATENT, for its transport modeling. Developed with ARE, SynPop supports mobility simulations and strategic planning, including the 2050 National Transport Perspectives. In the past, previous efforts to apply k-Anonymity yielded mixed results. While access to these datasets currently requires a form of NDA, the long-term goal is to enable unrestricted public access.
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54708
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialOlten
dc.subject.ddc330 - Wirtschaft
dc.titleAnonymization and analysis of geo-referenced demographic and socio-economic data: population, household, and company attributes in the SynPop dataset
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.StudentsWorkTypeBachelor
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutBachelor of Sciencede_CH
relation.isMentorOfPublication8b0a85e1-60d7-48f9-8551-419197a127e7
relation.isMentorOfPublication.latestForDiscovery8b0a85e1-60d7-48f9-8551-419197a127e7
Dateien