Simulation of calibrated complex synthetic population data with XGBoost

dc.contributor.authorGussenbauer, Johannes
dc.contributor.authorTempl, Matthias
dc.contributor.authorFritzmann, Siro
dc.contributor.authorKowarik, Alexander
dc.date.accessioned2025-01-14T09:05:27Z
dc.date.issued2024
dc.description.abstractSynthetic data generation methods are used to transform the original data into privacy-compliant synthetic copies (twin data). With our proposed approach, synthetic data can be simulated in the same size as the input data or in any size, and in the case of finite populations, even the entire population can be simulated. The proposed XGBoost-based method is compared with known model-based approaches to generate synthetic data using a complex survey data set. The XGBoost method shows strong performance, especially with synthetic categorical variables, and outperforms other tested methods. Furthermore, the structure and relationship between variables are well preserved. The tuning of the parameters is performed automatically by a modified k-fold cross-validation. If exact population margins are known, e.g., cross-tabulated population counts on age class, gender and region, the synthetic data must be calibrated to those known population margins. For this purpose, we have implemented a simulated annealing algorithm that is able to use multiple population margins simultaneously to post-calibrate a synthetic population. The algorithm is, thus, able to calibrate simulated population data containing cluster and individual information, e.g., about persons in households, at both person and household level. Furthermore, the algorithm is efficiently implemented so that the adjustment of populations with many millions or more persons is possible.
dc.identifier.doi10.3390/a17060249
dc.identifier.issn1999-4893
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48327
dc.identifier.urihttps://doi.org/10.26041/fhnw-11042
dc.issue6
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofAlgorithms
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialBasel
dc.subject.ddc330 - Wirtschaft
dc.subject.ddc005 - Computer Programmierung, Programme und Daten
dc.titleSimulation of calibrated complex synthetic population data with XGBoost
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume17
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublication8b0a85e1-60d7-48f9-8551-419197a127e7
relation.isAuthorOfPublication.latestForDiscovery8b0a85e1-60d7-48f9-8551-419197a127e7
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
algorithms-17-00249.pdf
Größe:
858.94 KB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: