Adapting Fuzzy Semi-Deviation Models for Public Markets Asset Allocation: A Comparative Analysis of FSMAD 1, FSMAD 2, and Mean-Variance Optimization

dc.contributor.authorPatil, Kush
dc.contributor.authorHendriks, Marc
dc.contributor.mentorWilke, Gwendolin
dc.contributor.partnerGlobal private markets investment firm, Zürich
dc.date.accessioned2025-12-15T13:32:19Z
dc.date.issued2025
dc.description.abstractTraditional Mean-Variance (MV) portfolio optimization faces significant challenges. It assumes normal return distributions, often underestimating risk during market stress due to financial returns exhibiting fat tails and skewness. The model is highly sensitive to input estimation errors, leading to unstable and extreme portfolio allocations. Furthermore, MV often results in corner solutions, where portfolios are concentrated in a few assets, undermining diversification. This study assess whether Fuzzy Semi-Mean Absolute Deviation (FSMAD) models can overcome these shortcomings.
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54696
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialOlten
dc.subject.ddc330 - Wirtschaft
dc.titleAdapting Fuzzy Semi-Deviation Models for Public Markets Asset Allocation: A Comparative Analysis of FSMAD 1, FSMAD 2, and Mean-Variance Optimization
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.StudentsWorkTypeBachelor
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutBachelor of Sciencede_CH
relation.isMentorOfPublicationd972092a-4d33-4558-bb26-46ffffe8b989
relation.isMentorOfPublication.latestForDiscoveryd972092a-4d33-4558-bb26-46ffffe8b989
Dateien