Robust Multivariate Methods for Income Data

dc.accessRightsAnonymous
dc.audienceSonstige
dc.contributor.authorHulliger, Beat
dc.contributor.authorSchoch, Tobias
dc.date.accessioned2015-10-05T15:43:23Z
dc.date.available2015-10-05T15:43:23Z
dc.date.issued2011-02-01T00:00:00Z
dc.description.abstractIncome inequality and poverty measures are central to the analysis of social welfare. However, recording and measurement errors, outlying observations exert strong influence on non-robust estimators of these measures. If the data cannot be purged of these, welfare conclusions drawn from the data can be seriously misleading. Moreover, these measures are computed on the basis of a univariate income variable, which is an aggregation of several distinct income sources or components. Notably outliers in several income components may severely affect the univariate income variable and thus the estimates. In addition, the aggregation process may propagate or mask outliers in the components. Therefore, instead of focusing on univariate robust estimators, propose to adopt truly multivariate outlier-detection and robust imputation methods. Both, outlier-detection- and imputation methods are adapted for the finite population sampling context and can cope with missing values and the multiple zero-inflation structure of income data. This kind of data.
dc.eventNew Technologies and Techniques (NTTS)
dc.identifier.urihttp://hdl.handle.net/11654/9896
dc.language.isoenen_US
dc.publisherEurostat
dc.relationAdvanced Methodology for European Laeken Indicators, 2008-04-01
dc.spatialBrüssel
dc.subjectstatistical method application
dc.subject.ddc330 - Wirtschaft
dc.subject.ddc659 - Werbung & Public Releations (PR)
dc.titleRobust Multivariate Methods for Income Data
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereunbekannt
fhnw.ReviewTypeNo peer review
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitute for Competitiveness and Communicationde_CH
fhnw.publicationStatePublished
relation.isAuthorOfPublication8f7e3774-71da-4779-9965-06869f77ecc4
relation.isAuthorOfPublication39a57657-8c2e-4332-ac6f-ab07436a9fcb
relation.isAuthorOfPublication.latestForDiscovery8f7e3774-71da-4779-9965-06869f77ecc4
relation.isProjectOfPublication37b27c88-263e-4b4a-8461-8f0235dd00e0
relation.isProjectOfPublication.latestForDiscovery37b27c88-263e-4b4a-8461-8f0235dd00e0
Dateien