Robuste Schätzer für das Fay-Herriot-Modell

dc.contributor.authorSchoch, Tobias
dc.date.accessioned2024-04-04T06:49:41Z
dc.date.available2024-04-04T06:49:41Z
dc.date.issued2019
dc.description.abstractRobuste Methoden für die Small-Area-Schätzung von Mittel- und Totalwerten sind seit einiger Zeit bekannt und werden erfolgreich in der Praxis eingesetzt. Eine Vielzahl von «robustifizierten» SAE-Schätzern ist aus ad-hoc-Überlegungen entstanden, was deren Tauglichkeit nicht schmälert. Für die Robustifizierung von Schätzern zum Fay-Herriot-Modell nehmen wir eine «theorie-nahe» Perspektive ein, was zu neuen Einsichten führt. Fay-Herriot (1979, J Amer Stat Assoc) haben das nach ihnen benannte Modell als Verallgemeinerung des James-Stein-Schätzers motiviert, wobei sie sich einen empirischen Bayes-Ansatz zunutze machten. Wir greifen diese Motivation des Problems auf und formulieren ein analoges robustes Bayes’sches Verfahren. Wählt man nun in der Bayes’schen Problemformulierung die ungünstigste Verteilung (eng. least favorable distribution) von Huber (1964, Ann Math Statist) als A-priori-Verteilung für die Lokationswerte der Small Areas, dann resultiert als Bayes-Schätzer [= Schätzer mit
dc.eventStatistische Woche 2019
dc.event.end2019-09-13
dc.event.start2019-09-10
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42530
dc.language.isode
dc.spatialTrier
dc.subject.ddc330 - Wirtschaft
dc.titleRobuste Schätzer für das Fay-Herriot-Modell
dc.type06 - Präsentation
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of an abstract
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitute for Competitiveness and Communicationde_CH
relation.isAuthorOfPublication39a57657-8c2e-4332-ac6f-ab07436a9fcb
relation.isAuthorOfPublication.latestForDiscovery39a57657-8c2e-4332-ac6f-ab07436a9fcb
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: