Application of Machine Learning Within the Integrative Design and Fabrication of Robotic Rod Bending Processes

dc.accessRightsAnonymous*
dc.contributor.authorSmigielska, Maria
dc.contributor.editorDe Rycke, Klaas
dc.contributor.editorGengnagel, Christoph
dc.contributor.editorBaverel, Olivier
dc.contributor.editorBurry, Jane
dc.contributor.editorMueller, Caitlin
dc.contributor.editorNguyen, Minh Man
dc.contributor.editorRahm, Philippe
dc.contributor.editorRamsgaard Thomsen, Mette
dc.date.accessioned2021-12-22T10:45:17Z
dc.date.available2021-12-22T10:45:17Z
dc.date.issued2018
dc.description.abstractThis paper presents the results of independent research that aims to investigate the potential and methodology of using Machine Learning (ML) algorithms for precision control of material deformation and increased geometrical and structural performances in robotic rod bending technology (RBT). Another focus lies in integrative methods where design, material properties analysis, structural analysis, optimization and fabrication of robotically rod bended space-frames are merged into one coherent data model and allows for bi-directional information flows, shifting from absolute dimensional architectural descriptions towards the definition of relational systems. The working methodology thus combines robotic RBT and ML with integrated fabrication methods as an alternative to over-specialized and enclosed industrial processes. A design project for the front desk of a gallery in Paris serves as a proof of concept of this research and becomes the starting point for future developments of this methodology.en_US
dc.identifier.doihttps://doi.org/10.1007/978-981-10-6611-5_44
dc.identifier.isbn978-981-10-6611-5
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33073
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofHumanizing Digital Reality: Design Modelling Symposium Paris 2017en_US
dc.spatialSingaporeen_US
dc.subjectrobotic fabricationen_US
dc.subjectmachine learningen_US
dc.subjectintegrated designen_US
dc.subjectintegrative designen_US
dc.subjectrobotic rod bendingen_US
dc.subjectdigital designen_US
dc.subjectdesign to productionen_US
dc.titleApplication of Machine Learning Within the Integrative Design and Fabrication of Robotic Rod Bending Processesen_US
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereNoen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Gestaltung und Kunst Basel FHNWde_CH
fhnw.affiliation.institutInstitute of Contemporary Design Practicesde_CH
fhnw.pagination523-536en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication4fac4218-5d12-453b-9b18-14e89598a2b2
relation.isAuthorOfPublication.latestForDiscovery4fac4218-5d12-453b-9b18-14e89598a2b2
Dateien