Fronto-orbital advancement with patient-specific 3D-printed implants and robot-guided laser osteotomy: an in vitro accuracy assessment
Lade...
Autor:in (Körperschaft)
Publikationsdatum
13.12.2024
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
International Journal of Computer Assisted Radiology and Surgery
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
20
Ausgabe / Nummer
3
Seiten / Dauer
513-524
Patentnummer
Verlag / Herausgebende Institution
Springer
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Purpose: The use of computer-assisted virtual surgical planning (VSP) for craniosynostosis surgery is gaining increasing implementation in the clinics. However, accurately transferring the preoperative planning data to the operating room remains challenging. We introduced and investigated a fully digital workflow to perform fronto-orbital advancement (FOA) surgery using 3D-printed patient-specific implants (PSIs) and cold-ablation robot-guided laser osteotomy. This novel approach eliminates the need for traditional surgical templates while enhancing precision and customization, offering a more streamlined and efficient surgical process. Methods: Computed tomography data of a patient with craniosynostosis were used to digitally reconstruct the skull and to perform VSP of the FOA. In total, six PSIs per skull were 3D-printed with a medical-grade bioresorbable composite using the Arburg Plastic Freeforming technology. The planned osteotomy paths and the screw holes, including their positions and axis angles, were digitally transferred to the cold-ablation robot-guided osteotome interface. The osteotomies were performed on 3D-printed patient skull models. The implants, osteotomy and final FOA results were scanned and compared to the VSP data. Results: The osteotomy deviations for the skulls indicated an overall maximum distance of 1.7 mm, a median deviation of 0.44 mm, and a maximum root mean square (RMS) error of 0.67 mm. The deviation of the point-to-point surface comparison of the FOA with the VSP data resulted in a median accuracy of 1.27 mm. Accessing the orbital cavity with the laser remained challenging. Conclusion: This in vitro study showcases a novel FOA technique by effectively combining robot-guided laser osteotomy with 3D-printed patient-specific implants, eliminating the need for surgical templates and achieving high accuracy in bone cutting and positioning. The workflow holds promise for reducing preoperative planning time and increasing surgical efficiency. Further studies on bone tissue are required to validate the safety and effectiveness of this approach, especially in addressing the challenges of pediatric craniofacial surgery.
Schlagwörter
Computer-aided design, Craniosynostosis, Laser osteotome, Patient-specific implants, Pediatrics, Robot-assisted surgery
Fachgebiet (DDC)
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1861-6429
1861-6410
1861-6410
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Future Health
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Hybrid
Zitation
Maintz, M., Desan, N., Sharma, N., Beinemann, J., Beyer, M., Seiler, D., Honigmann, P., Soleman, J., Guzman, R., Cattin, P. C., & Thieringer, F. M. (2024). Fronto-orbital advancement with patient-specific 3D-printed implants and robot-guided laser osteotomy: an in vitro accuracy assessment. International Journal of Computer Assisted Radiology and Surgery, 20(3), 513–524. https://doi.org/10.1007/s11548-024-03298-6