Towards Radiomics-based automated disease progression assessment for glioblastoma patients

Typ
04B - Beitrag Konferenzschrift
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 9th International Workshop, BrainLes 2023, and 3rd International Workshop, SWITCH 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8 and 12, 2023, Revised Selected Papers
Themenheft
Link
Reihe / Serie
Lecture Notes in Computer Science
Reihennummer
14668
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
36-47
Patentnummer
Verlag / Herausgebende Institution
Springer
Verlagsort / Veranstaltungsort
Vancouver
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Glioblastoma is a highly infiltrative brain tumor with fast progression and poor prognosis for patients. Due to the rapid growth, close treatment response monitoring is key. In this study, we benchmark different machine learning approaches for automated progression classiu0002fication with various radiomic feature sets extracted from longitudinal magnetic resonance imaging and classifiers. Our experiments show difu0002ferences in robustness and performance and offer insights into common failure modes. The best ROC-AUC was achieved with a random forest classifier without feature selection (0.748), and the best F1 score was at 0.792 for an XGBoost classifier where features of the current time point and the change from the reference time point were provided. Anau0002lyzing misclassifications shows different behavior for statistical machine learning classifiers and Residual Neural Networks.
Schlagwörter
Fachgebiet (DDC)
Projekt
Veranstaltung
The 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023)
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
08.10.2023
Enddatum der Konferenz
12.10.2023
Datum der letzten Prüfung
ISBN
978-3-031-76159-1
978-3-031-76160-7
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Nein
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
Zitation
Suter, Y., Schuhmacher, F., Ermis, E., Knecht, U., Schucht, P., Wiest, R., & Reyes, M. (2024). Towards Radiomics-based automated disease progression assessment for glioblastoma patients. In U. Baid, R. Dorent, S. Malec, M. Pytlarz, R. Su, N. Wijethilake, S. Bakas, & A. Crimi (Eds.), Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 9th International Workshop, BrainLes 2023, and 3rd International Workshop, SWITCH 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8 and 12, 2023, Revised Selected Papers (pp. 36–47). Springer. https://doi.org/10.1007/978-3-031-76160-7_4