Statistical analysis of chemical element compositions in food science: problems and possibilities

dc.contributor.authorTempl, Matthias
dc.contributor.authorTempl, Barbara
dc.date.accessioned2024-05-28T12:06:29Z
dc.date.available2024-05-28T12:06:29Z
dc.date.issued2022
dc.description.abstractIn recent years, many analyses have been carried out to investigate the chemical components of food data. However, studies rarely consider the compositional pitfalls of such analyses. This is problematic as it may lead to arbitrary results when non-compositional statistical analysis is applied to compositional datasets. In this study, compositional data analysis (CoDa), which is widely used in other research fields, is compared with classical statistical analysis to demonstrate how the results vary depending on the approach and to show the best possible statistical analysis. For example, honey and saffron are highly susceptible to adulteration and imitation, so the determination of their chemical elements requires the best possible statistical analysis. Our study demonstrated how principle component analysis (PCA) and classification results are influenced by the pre-processing steps conducted on the raw data, and the replacement strategies for missing values and non-detects. Furthermore, it demonstrated the differences in results when compositional and non-compositional methods were applied. Our results suggested that the outcome of the log-ratio analysis provided better separation between the pure and adulterated data and allowed for easier interpretability of the results and a higher accuracy of classification. Similarly, it showed that classification with artificial neural networks (ANNs) works poorly if the CoDa pre-processing steps are left out. From these results, we advise the application of CoDa methods for analyses of the chemical elements of food and for the characterization and authentication of food products.
dc.identifier.doi10.3390/molecules26195752
dc.identifier.issn1420-3049
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43325
dc.identifier.urihttps://doi.org/10.26041/fhnw-7290
dc.issue19
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofMolecules
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialBasel
dc.subject.ddc330 - Wirtschaft
dc.titleStatistical analysis of chemical element compositions in food science: problems and possibilities
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume26
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryGold
fhnw.pagination5752
fhnw.publicationStatePublished
relation.isAuthorOfPublication8b0a85e1-60d7-48f9-8551-419197a127e7
relation.isAuthorOfPublication.latestForDiscovery8b0a85e1-60d7-48f9-8551-419197a127e7
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Templ_Templ_2022_Statistical_analysis_of_chemical_element_compositions_in_food_science.pdf
Größe:
431.11 KB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: