Microbial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomes

Vorschaubild nicht verfügbar
Autor:innen
Qi, Mengyuan
Liang, Bin
Ma, Xiaodan
Yan, Lei
Dong, Wenchen
Kong, Deyong
Zhang, Liying
Zhu, Haizhen
Gao, Shu-Hong
Autor:in (Körperschaft)
Publikationsdatum
02.03.2021
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Environmental Science & Technology
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
55
Ausgabe / Nummer
5
Seiten / Dauer
3270-3282
Patentnummer
Verlag / Herausgebende Institution
American Chemical Society
Verlagsort / Veranstaltungsort
Washington
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Microbial communities are believed to outperform monocultures in the complete catabolism of organic pollutants via reduced metabolic burden and increased robustness to environmental challenges; however, the interaction mechanism in functional microbiomes remains poorly understood. Here, three functionally differentiated activated sludge microbiomes (S1: complete catabolism of sulfamethoxazole (SMX); S2: complete catabolism of the phenyl part of SMX ([phenyl]-SMX) with stable accumulation of its heterocyclic product 3-amino-5-methylisoxazole (3A5MI); A: complete catabolism of 3A5MI rather than [phenyl]-SMX) were enriched. Combining time-series cultivation-independent microbial community analysis, DNA-stable isotope probing, molecular ecological network analysis, and cultivation-dependent function verification, we identified key players involved in the SMX degradation process. Paenarthrobacter and Nocardioides were primary degraders for the initial cleavage of the sulfonamide functional group (-C-S-N- bond) and 3A5MI degradation, respectively. Complete catabolism of SMX was achieved by their cross-feeding. The co-culture of Nocardioides, Acidovorax, and Sphingobium demonstrated that the nondegraders Acidovorax and Sphingobium were involved in the enhancement of 3A5MI degradation. Moreover, we unraveled the internal labor division patterns and connections among the active members centered on the two primary degraders. Overall, the proposed methodology is promisingly applicable and would help generate mechanistic, predictive, and operational understanding of the collaborative biodegradation of various contaminants. This study provides useful information for synthetic activated sludge microbiomes with optimized environmental functions.
Schlagwörter
Anti-Bacterial Agents, Biodegradation, Environmental, microbiota, sewage, Sulfamethoxazole, water pollutants
Fachgebiet (DDC)
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1520-5851
0013-936X
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
Zitation
CORVINI, Philippe, Mengyuan QI, Bin LIANG, Xiaodan MA, Lei YAN, Wenchen DONG, Deyong KONG, Liying ZHANG, Haizhen ZHU, Shu-Hong GAO, Jiandong JIANG, Shuan-Jiang LIU und Aijie WANG, 2021. Microbial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomes. Environmental Science & Technology. 2 März 2021. Bd. 55, Nr. 5, S. 3270–3282. DOI 10.1021/acs.est.0c06687. Verfügbar unter: https://irf.fhnw.ch/handle/11654/33310