wbacon: weighted BACON algorithms for multivariate outlier nomination (detection) and robust linear regression

dc.contributor.authorSchoch, Tobias
dc.date.accessioned2024-05-27T13:23:28Z
dc.date.available2024-05-27T13:23:28Z
dc.date.issued2021
dc.description.abstractOutlier nomination (detection) and robust regression are computationally hard problems. This is all the more true when the number of variables and observations grow rapidly. Among all candidate methods, the two BACON (blocked adaptive computationally efficient outlier nominators) algorithms of Billor et al.(2000) have favorable computational characteristics as they require only a few model evaluations irrespective of the sample size. This makes them popular algorithms for multivariate outlier nomination/detection and robust linear regression (at the time of writing Google Scholar reports more than 500 citations of the Billor et al.(2000) paper). wbacon is a package for the R statistical software (R Core Team, 2021). It is aimed at medium to large data sets that can possibly have (sampling) weights (e.g., data from complex survey samples). The package has a user-friendly Rinterface (with plotting methods, etc.) and is written mainly in the C language (with OpenMP support for parallelization; see OpenMP Architecture Review Board(2018)) for performance reasons.
dc.identifier.doi10.21105/joss.03238
dc.identifier.issn2475-9066
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43060
dc.identifier.urihttps://doi.org/10.26041/fhnw-7025
dc.issue62
dc.language.isoen
dc.publisherOpen Journals
dc.relation.ispartofThe Journal of Open Source Software
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc330 - Wirtschaft
dc.titlewbacon: weighted BACON algorithms for multivariate outlier nomination (detection) and robust linear regression
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume6
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryDiamond
fhnw.publicationStatePublished
relation.isAuthorOfPublication39a57657-8c2e-4332-ac6f-ab07436a9fcb
relation.isAuthorOfPublication.latestForDiscovery39a57657-8c2e-4332-ac6f-ab07436a9fcb
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Schoch_2021_wbacon.pdf
Größe:
175 KB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: