Treatment of sample under-representation and skewed heavy-tailed distributions in survey-based microsimulation: An analysis of redistribution effects in compulsory health care insurance in Switzerland

Lade...
Vorschaubild
Autor:innen
Müller, André
Autor:in (Körperschaft)
Publikationsdatum
2020
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
AStA Wirtschafts- und Sozialstatistisches Archiv
Themenheft
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
14
Ausgabe / Nummer
3-4
Seiten / Dauer
267-304
Patentnummer
Verlag / Herausgebende Institution
Springer
Verlagsort / Veranstaltungsort
Cham
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The credibility of microsimulation modeling with the research community and policymakers depends on high-quality baseline surveys. Quality problems with the baseline survey tend to impair the quality of microsimulation built on top of the survey data. We address two potential issues that both relate to skewed and heavy-tailed distributions. First, we find that ultra-high-income households are under-represented in the baseline household survey. Moreover, the sample estimate of average income underestimates the known population average. Although the Deville-Särndal calibration method corrects the under-representation, it cannot achieve alignment of estimated average income in the right tail of the distribution with known population values without distorting the empirical income distribution. To overcome the problem, we introduce a Pareto tail model. With the help of the tail model, we can adjust the sample income distribution in the tail to meet the alignment targets. Our method can be a useful tool for microsimulation modelers working with survey income data. The second contribution refers to the treatment of an outlier-prone variable that has been added to the survey by record linkage (our empirical example is health care cost). The nature of the baseline survey is not affected by record linkage, that is, the baseline survey still covers only a small part of the population. Hence, the sampling weights are relatively large. An outlying observation together with a high sampling weight can heavily influence or even ruin an estimate of a population characteristic. Thus, we argue that it is beneficial – in terms of mean square error – to use robust estimation and alignment methods, because robust methods are less affected by the presence of outliers.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1863-8155
1863-8163
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Hybrid
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
SCHOCH, Tobias und André MÜLLER, 2020. Treatment of sample under-representation and skewed heavy-tailed distributions in survey-based microsimulation: An analysis of redistribution effects in compulsory health care insurance in Switzerland. AStA Wirtschafts- und Sozialstatistisches Archiv. 2020. Bd. 14, Nr. 3-4, S. 267–304. DOI 10.1007/s11943-020-00275-8. Verfügbar unter: https://doi.org/10.26041/fhnw-6708