The Bayesian causal inference model benefits from an informed prior to predict proprioceptive drift in the rubber foot illusion
dc.accessRights | Anonymous | * |
dc.audience | Science | en_US |
dc.contributor.author | Schürmann, Tim | |
dc.contributor.author | Vogt, Joachim | |
dc.contributor.author | Christ, Oliver | |
dc.contributor.author | Beckerle, Philipp | |
dc.date.accessioned | 2019-12-12T14:55:23Z | |
dc.date.available | 2019-12-12T14:55:23Z | |
dc.date.issued | 2019-08-21 | |
dc.description.abstract | Bayesian cognitive modeling has become a prominent tool for the cognitive sciences aiming at a deeper understanding of the human mind and applications in cognitive systems, e.g., humanoid or wearable robotics. Such approaches can capture human behavior adequately with a focus on the crossmodal processing of sensory information. We investigate whether the Bayesian causal inference model can estimate the proprioceptive drift observed in empirical studies. | en_US |
dc.description.uri | https://link.springer.com/article/10.1007%2Fs10339-019-00928-9#citeas | en_US |
dc.identifier.doi | https://doi.org/10.1007/s10339-019-00928-9 | |
dc.identifier.issn | 1612-4790 | |
dc.identifier.issn | 1612-4782 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/30158 | |
dc.identifier.uri | https://doi.org/10.26041/fhnw-1901 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Cognitive Processing | en_US |
dc.subject | Rubber Leg Illusion | en_US |
dc.subject | Bayesian Cognitive Modeling | en_US |
dc.subject | Wearable Robotics | en_US |
dc.subject.ddc | 100 - Philosophie und Psychologie | en_US |
dc.title | The Bayesian causal inference model benefits from an informed prior to predict proprioceptive drift in the rubber foot illusion | en_US |
dc.type | 01A - Beitrag in wissenschaftlicher Zeitschrift | |
dc.volume | 20 | en_US |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | en_US |
fhnw.IsStudentsWork | no | en_US |
fhnw.PublishedSwitzerland | No | en_US |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | en_US |
fhnw.affiliation.hochschule | Hochschule für Angewandte Psychologie | de_CH |
fhnw.affiliation.institut | Institut Mensch in komplexen Systemen | de_CH |
fhnw.pagination | 447-457 | en_US |
fhnw.publicationOnline | Ja | en_US |
fhnw.publicationState | Published | en_US |
relation.isAuthorOfPublication | 48f2cc4c-aedf-4530-94ca-d002e62109ee | |
relation.isAuthorOfPublication.latestForDiscovery | 48f2cc4c-aedf-4530-94ca-d002e62109ee |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- Schürmann2019_Article_TheBayesianCausalInferenceMode.pdf
- Größe:
- 778.86 KB
- Format:
- Adobe Portable Document Format
- Beschreibung: