The supportive AI framework: from recommending to supporting

dc.contributor.authorWäfler, Toni
dc.contributor.authorHamouche, Samira
dc.contributor.authorEisenegger, Andrina
dc.contributor.editorSchmorrow, Dylan D.
dc.contributor.editorFidopiastis, Cali M.
dc.date.accessioned2025-12-11T08:43:22Z
dc.date.issued2025-06-25
dc.date.valid2025-11-27
dc.description.abstractThis paper presents the Supportive AI Framework, a conceptual framework for the design of human-AI collaboration to augment human cognition. AI-based decision support systems that are recommendation-driven (i.e. the AI makes a recommendation, and the human must decide whether to accept or reject it) often overstrain humans. The reason for this is the problem known as the ‘ironies of automation’, which occurs when humans are expected to supervise a technology that exceeds human capabilities. In terms of recommendation-driven AI, this is an impossible task for humans, as they must decide on AI-generated recommendations that take into account far more data and factors than humans are able to consider. Against this background, the Supportive AI Framework aims to go beyond recommendation-driven AI towards AI that explicitly supports cognitive processes of human decision-making, human learning, human trusting, and human motivation. This as a complement to providing comprehensibility through explainable AI and interpretable models. The Supportive AI Framework is theory-based and includes theories from the areas of natural decision making, experiential learning, intrinsic motivation, socio-technical system design and complementary function allocation.
dc.event19th International Conference, AC 2025 and 27th HCI International Conference, HCII 2025
dc.event.end2025-06-27
dc.event.start2025-06-22
dc.identifier.doihttps://doi.org/10.1007/978-3-031-93724-8_22
dc.identifier.isbn978-3-031-93723-1
dc.identifier.isbn978-3-031-93724-8
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54182
dc.language.isoen
dc.publisherSpringer
dc.relationAI4REALNET, 2025-01-01
dc.relation.ispartofAugmented cognition
dc.spatialCham
dc.subjectHuman-AI collaboration
dc.subjectAugmented cognition
dc.subjectDecision-making
dc.subjectCritical infrastructure
dc.subjectComplementary function allocation
dc.subject.ddc150 - Psychologie
dc.subject.ddc005 - Computer Programmierung, Programme und Daten
dc.titleThe supportive AI framework: from recommending to supporting
dc.type04B - Beitrag Konferenzschrift
dc.volume1
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Angewandte Psychologie FHNWde_CH
fhnw.affiliation.institutInstitut Mensch in komplexen Systemende_CH
fhnw.openAccessCategoryClosed
fhnw.pagination303–317
fhnw.publicationStatePublished
relation.isAuthorOfPublication82d34b36-8c33-40cc-863b-bfbca0b7ff35
relation.isAuthorOfPublicationdf92cfe5-b622-4ad9-8d7c-30d14674dd17
relation.isAuthorOfPublication1fab1bd6-9136-44b1-b008-6ee78c3a6ad5
relation.isAuthorOfPublication7280b65b-69be-4635-858d-3e464ab457aa
relation.isAuthorOfPublication1fab1bd6-9136-44b1-b008-6ee78c3a6ad5
relation.isAuthorOfPublication.latestForDiscovery82d34b36-8c33-40cc-863b-bfbca0b7ff35
relation.isProjectOfPublicationb0dae845-5a83-400a-b3dd-5911797eadab
relation.isProjectOfPublication.latestForDiscoveryb0dae845-5a83-400a-b3dd-5911797eadab
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: