The impact of misclassifications and outliers on imputation methods

dc.contributor.authorTempl, Matthias
dc.contributor.authorUlmer, Markus
dc.date.accessioned2025-01-25T08:51:33Z
dc.date.issued2024
dc.description.abstractMany imputation methods have been developed over the years and tested mostly under ideal settings. Surprisingly, there is no detailed research on how imputation methods perform when the idealized assumptions about the distribution of data and/or model assumptions are partly not fulfilled. This research looks into the susceptibility of imputation techniques, particularly in relation to outliers, misclassifications, and incorrect model specifications. This is crucial knowledge about how well the methods convince in everyday life because, in reality, conditions are usually not ideal, and model assumptions may not hold. The data may not fit the defined models well. Outliers distort the estimates, and misclassifications reduce the quality of most imputation methods. Several different evaluation measures are discussed, from comparing imputed values with true values or comparing certain statistics, from the performance of classifiers to the variance of estimated parameters. Some well-known imputation methods are compared based on real data and simulations. It turns out that robust conditional imputation methods outperform other methods for real data and simulation settings.
dc.identifier.doi10.1080/02664763.2024.2325969
dc.identifier.issn1360-0532
dc.identifier.issn0266-4763
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48241
dc.identifier.urihttps://doi.org/10.26041/fhnw-10956
dc.issue14
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.ispartofJournal of Applied Statistics
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialLondon
dc.subject.ddc510 - Mathematik
dc.titleThe impact of misclassifications and outliers on imputation methods
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume51
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryHybrid
fhnw.pagination2894-2928
fhnw.publicationStatePublished
relation.isAuthorOfPublication8b0a85e1-60d7-48f9-8551-419197a127e7
relation.isAuthorOfPublication.latestForDiscovery8b0a85e1-60d7-48f9-8551-419197a127e7
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
The impact of misclassifications and outliers on imputation methods.pdf
Größe:
5.13 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: