Insights on the current state and future outlook of AI in health care: expert interview study
Vorschaubild nicht verfügbar
Autor:innen
Hummelsberger, Pia
Koch, Timo K.
Rauh, Sabrina
Dorn, Julia
Lermer, Eva
Raue, Martina
Schicho, Andreas
Colak, Errol
Ghassemi, Marzyeh
Autor:in (Körperschaft)
Publikationsdatum
2023
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
JMIR AI
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
2
Ausgabe / Nummer
e47353
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
JMIR Publications
Verlagsort / Veranstaltungsort
Toronto
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Background
Artificial intelligence (AI) is often promoted as a potential solution for many challenges health care systems face worldwide. However, its implementation in clinical practice lags behind its technological development.
Objective
This study aims to gain insights into the current state and prospects of AI technology from the stakeholders most directly involved in its adoption in the health care sector whose perspectives have received limited attention in research to date.
Methods
For this purpose, the perspectives of AI researchers and health care IT professionals in North America and Western Europe were collected and compared for profession-specific and regional differences. In this preregistered, mixed methods, cross-sectional study, 23 experts were interviewed using a semistructured guide. Data from the interviews were analyzed using deductive and inductive qualitative methods for the thematic analysis along with topic modeling to identify latent topics.
Results
Through our thematic analysis, four major categories emerged: (1) the current state of AI systems in health care, (2) the criteria and requirements for implementing AI systems in health care, (3) the challenges in implementing AI systems in health care, and (4) the prospects of the technology. Experts discussed the capabilities and limitations of current AI systems in health care in addition to their prevalence and regional differences. Several criteria and requirements deemed necessary for the successful implementation of AI systems were identified, including the technology’s performance and security, smooth system integration and human-AI interaction, costs, stakeholder involvement, and employee training. However, regulatory, logistical, and technical issues were identified as the most critical barriers to an effective technology implementation process. In the future, our experts predicted both various threats and many opportunities related to AI technology in the health care sector.
Conclusions
Our work provides new insights into the current state, criteria, challenges, and outlook for implementing AI technology in health care from the perspective of AI researchers and IT professionals in North America and Western Europe. For the full potential of AI-enabled technologies to be exploited and for them to contribute to solving current health care challenges, critical implementation criteria must be met, and all groups involved in the process must work together.
Schlagwörter
Fachgebiet (DDC)
150 - Psychologie
610 - Medizin und Gesundheit
004 - Computer Wissenschaften, Internet
610 - Medizin und Gesundheit
004 - Computer Wissenschaften, Internet
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
2817-1705
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Nein
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
Zitation
HUMMELSBERGER, Pia, Timo K. KOCH, Sabrina RAUH, Julia DORN, Eva LERMER, Martina RAUE, Matthias HUDECEK, Andreas SCHICHO, Errol COLAK, Marzyeh GHASSEMI und Susanne GAUBE, 2023. Insights on the current state and future outlook of AI in health care: expert interview study. JMIR AI. 2023. Bd. 2, Nr. e47353. DOI 10.2196/47353. Verfügbar unter: https://irf.fhnw.ch/handle/11654/47598