Fleet management in free-floating bike sharing systems using predictive modelling and explorative tools

Lade...
Vorschaubild
Autor:in (Körperschaft)
Publikationsdatum
2020
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Austrian Journal of Statistics
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
49
Ausgabe / Nummer
2
Seiten / Dauer
53–69
Patentnummer
Verlag / Herausgebende Institution
Austrian Statistical Society
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
For redistribution and operating bikes in a free-floating systems, two measures are of highest priority. First, the information about the expected number of rentals on a day is an important measure for service providers for management and service of their fleet. The estimation of the expected number of bookings is carried out with a simple model and a more complex model based on meterological information, as the number of loans depends strongly on the current and forecasted weather. Secondly, the knowledge of a service level violation in future on a fine spatial resolution is important for redistribution of bikes. With this information, the service provider can set reward zones where service level violations will occur in the near future. To forecast a service level violation on a fine geographical resolution the current distribution of bikes as well as the time and space information of past rentals has to be taken into account. A Markov Chain Model is formulated to integrate this information. We develop a management tool that describes in an explorative way important information about past, present and predicted future counts on rentals in time and space. It integrates all estimation procedures. The management tool is running in the browser and continuously updates the information and predictions since the bike distribution over the observed area is in continous flow as well as new data are generated continuously.
Schlagwörter
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1026-597X
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Nein
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Diamond
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
Templ, M., & Heitz, C. (2020). Fleet management in free-floating bike sharing systems using predictive modelling and explorative tools. Austrian Journal of Statistics, 49(2), 53–69. https://doi.org/10.17713/ajs.v49i2.1114