Architectonic Studies of Radio Signals: Reorganizing Archives of Data/Natures In Their Own Terms

Lade...
Vorschaubild
Dateien
[pdf slides of the presentation]
[keynote slides of the presentation]
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
18.08.2020
Typ der Arbeit
Studiengang
Typ
06 - Präsentation
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Prague
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
As we slowly accustom to thinking about planetary issues through the notion of ‘assemblage’ rather than that of the ‘system’, we get better at acknowledging complex entanglements between living and inert, between social and technical. This paper presents a critical reflection on the use of machine learning techniques to support reasoning about natural phenomena. It engages data/natures by focusing on data radio signals: a phenomenon that pertains to both culture (telecommunications) and nature (atmospheric lightning discharges). Signal Identification Guide Wiki, a rich archive of signals observed and documented by a community of radio enthusiasts is the starting point of this study. In order to articulate alternative ways to study and engage with radio signals, I develop 'digital observatories': new methods for organizing and navigating abundant digital information based on critical use of self-organising map algorithm. I present a study of distribution patterns and clustering of signal qualities, when signals are reduced to spectrograms (visual representation of signal frequency composition). This 'digital observatory' aims to facilitate speculation on the connection between signal representation and technical communication protocols, by enabling the observer to identify criteria of similarity, and intervene in this organised space by adding new (real or imaginary) data. The project contributes to the fields of STS and experimental design research with an interest in the digital, unsettling the dichotomies previously described and providing avenues for recognition of the entangled nature of matter and information, of human and other-than-human, beyond simple ontological distinctions.
Schlagwörter
radio, machine learning, nature/culture, data/nature, data, digital observatory
Fachgebiet (DDC)
Veranstaltung
EASST/4S CONFERENCE Locating and Timing Matters: Significance and Agency of STS in Emerging Worlds
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review des Abstracts
Open Access-Status
Lizenz
'http://creativecommons.org/licenses/by-nc-sa/3.0/us/'
Zitation
SAVIC, Selena, 2020. Architectonic Studies of Radio Signals: Reorganizing Archives of Data/Natures In Their Own Terms. EASST/4S CONFERENCE Locating and Timing Matters: Significance and Agency of STS in Emerging Worlds. Prague. 18 August 2020. Verfügbar unter: https://doi.org/10.26041/fhnw-3546