Can we ignore the compositional nature of compositional data by using deep learning aproaches?

dc.contributor.authorTempl, Matthias
dc.contributor.editorPerna, Cira
dc.contributor.editorSalvati, Nicola
dc.contributor.editorSchirripa Spagnolo, Francesco
dc.date.accessioned2024-05-15T13:34:46Z
dc.date.available2024-05-15T13:34:46Z
dc.date.issued2021
dc.description.abstract
dc.event50th Scientific Meeting of the Italian Statistical Society (SIS 2021)
dc.event.end2021-06-25
dc.event.start2021-06-21
dc.identifier.isbn978-88-919-2736-1
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43326
dc.language.isoen
dc.publisherPearson
dc.relation.ispartofBook of short papers SIS 2021
dc.spatialLondon
dc.subject.ddc330 - Wirtschaft
dc.titleCan we ignore the compositional nature of compositional data by using deep learning aproaches?
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeLectoring (ex ante)
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Unternehmensführungde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination243-248
fhnw.publicationStatePublished
relation.isAuthorOfPublication8b0a85e1-60d7-48f9-8551-419197a127e7
relation.isAuthorOfPublication.latestForDiscovery8b0a85e1-60d7-48f9-8551-419197a127e7
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: